Skip main navigation
×

Leu22_Leu23 Duplication at the Signal Peptide of PCSK9 Promotes Intracellular Degradation of LDLr and Autosomal Dominant Hypercholesterolemia

Originally publishedhttps://doi.org/10.1161/ATVBAHA.122.315499Arteriosclerosis, Thrombosis, and Vascular Biology. 2022;42:e203–e216

    Background:

    PCSK9 (Proprotein convertase subtilisin/kexin type 9) regulates LDL-C (low-density lipoprotein cholesterol) metabolism by targeting LDLr (LDL receptor) for lysosomal degradation. PCSK9 gain-of-function variants cause autosomal dominant hypercholesterolemia by reducing LDLr levels, the D374Y variant being the most severe, while loss-of-function variants are associated with low LDL-C levels. Gain-of-function and loss-of-function activities have also been attributed to variants occurring in the PCSK9 signal peptide. Among them, L11 is a very rare PCSK9 variant that seems to increase LDL-C values in a moderate way causing mild hypercholesterolemia.

    Methods:

    Using molecular biology and biophysics methodologies, activities of L8 and L11 variants, both located in the leucine repetition stretch of the signal peptide, have been extensively characterized in vitro.

    Results:

    L8 variant is not associated with increased LDLr activity, whereas L11 activity is increased by ≈20% compared with wt PCSK9. The results suggest that the L11 variant reduces LDLr levels intracellularly by a process resulting from impaired cleavage of the signal peptide. This would lead to less efficient LDLr transport to the cell membrane and promote LDLr intracellular degradation.

    Conclusions:

    Deletion of a leucine in the signal peptide in L8 variant does not affect PCSK9 activity, whereas the leucine duplication in the L11 variant enhances LDLr intracellular degradation. These findings highlight the importance of deep in vitro characterization of PCSK9 genetic variants to determine pathogenicity and improve clinical diagnosis and therapy of inherited familial hypercholesterolemia disease.

    Footnotes

    Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/ATVBAHA.122.315499.

    For Sources of Funding and Disclosures, see page e214.

    Correspondence to: Cesar Martín, PhD, Departamento de Bioquímica, Biofisika Institute (UPV/EHU, CSIC), Universidad del País Vasco, Barrio Sarriena s/n, Bilbao 48080, Spain. Email

    References

    • 1. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, et al.. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia.Nat Genet. 2003; 34:154–156. doi: 10.1038/ng1161Google Scholar
    • 2. Allard D, Amsellem S, Abifadel M, Trillard M, Devillers M, Luc G, Krempf M, Reznik Y, Girardet JP, Fredenrich A, et al.. Novel mutations of the PCSK9 gene cause variable phenotype of autosomal dominant hypercholesterolemia.Hum Mutat. 2005; 26:497. doi: 10.1002/humu.9383Google Scholar
    • 3. Leren TP. Mutations in the PCSK9 gene in Norwegian subjects with autosomal dominant hypercholesterolemia.Clin Genet. 2004; 65:419–422. doi: 10.1111/j.0009-9163.2004.0238.xGoogle Scholar
    • 4. Marduel M, Ouguerram K, Serre V, Bonnefont-Rousselot D, Marques-Pinheiro A, Erik Berge K, Devillers M, Luc G, Lecerf JM, Tosolini L, et al.; French Research Network on ADH. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p.Leu167del mutation.Hum Mutat. 2013; 34:83–87. doi: 10.1002/humu.22215Google Scholar
    • 5. Awan Z, Choi HY, Stitziel N, Ruel I, Bamimore MA, Husa R, Gagnon MH, Wang RH, Peloso GM, Hegele RA, et al.. APOE p.Leu167del mutation in familial hypercholesterolemia.Atherosclerosis. 2013; 231:218–222. doi: 10.1016/j.atherosclerosis.2013.09.007Google Scholar
    • 6. Cenarro A, Etxebarria A, de Castro-Orós I, Stef M, Bea AM, Palacios L, Mateo-Gallego R, Benito-Vicente A, Ostolaza H, Tejedor T, et al.. The p.Leu167del mutation in APOE Gene causes autosomal dominant hypercholesterolemia by down-regulation of LDL receptor expression in hepatocytes.J Clin Endocrinol Metab. 2016; 101:2113–2121. doi: 10.1210/jc.2015-3874Google Scholar
    • 7. Maxwell KN, Fisher EA, Breslow JL. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment.Proc Natl Acad Sci U S A. 2005; 102:2069–2074. doi: 10.1073/pnas.0409736102Google Scholar
    • 8. Seidah NG, Benjannet S, Wickham L, Marcinkiewicz J, Jasmin SB, Stifani S, Basak A, Prat A, Chretien M. The secretory proprotein convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): liver regeneration and neuronal differentiation.Proc Natl Acad Sci USA. 2003; 100:928–933. doi: 10.1073/pnas.0335507100Google Scholar
    • 9. Bottomley MJ, Cirillo A, Orsatti L, Ruggeri L, Fisher TS, Santoro JC, Cummings RT, Cubbon RM, Lo Surdo P, Calzetta A, et al.. Structural and biochemical characterization of the wild type PCSK9-EGF(AB) complex and natural familial hypercholesterolemia mutants.J Biol Chem. 2009; 284:1313–1323. doi: 10.1074/jbc.M808363200Google Scholar
    • 10. Chen Y, Wang H, Yu L, Yu X, Qian YW, Cao G, Wang J. Role of ubiquitination in PCSK9-mediated low-density lipoprotein receptor degradation.Biochem Biophys Res Commun. 2011; 415:515–518. doi: 10.1016/j.bbrc.2011.10.110Google Scholar
    • 11. Zhang DW, Lagace TA, Garuti R, Zhao Z, McDonald M, Horton JD, Cohen JC, Hobbs HH. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation.J Biol Chem. 2007; 282:18602–18612. doi: 10.1074/jbc.M702027200Google Scholar
    • 12. Hopkins PN, Defesche J, Fouchier SW, Bruckert E, Luc G, Cariou B, Sjouke B, Leren TP, Harada-Shiba M, Mabuchi H, et al.. Characterization of autosomal dominant hypercholesterolemia caused by PCSK9 gain of function mutations and its specific treatment with alirocumab, a PCSK9 monoclonal antibody.Circ Cardiovasc Genet. 2015; 8:823–831. doi: 10.1161/CIRCGENETICS.115.001129Google Scholar
    • 13. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.N Engl J Med. 2006; 354:1264–1272. doi: 10.1056/NEJMoa054013Google Scholar
    • 14. Benjannet S, Rhainds D, Essalmani R, Mayne J, Wickham L, Jin W, Asselin MC, Hamelin J, Varret M, Allard D, et al.. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol.J Biol Chem. 2004; 279:48865–48875. doi: 10.1074/jbc.M409699200Google Scholar
    • 15. Abifadel M, Bernier L, Dubuc G, Nuel G, Rabès JP, Bonneau J, Marques A, Marduel M, Devillers M, Munnich A, et al.. A PCSK9 variant and familial combined hyperlipidaemia.J Med Genet. 2008; 45:780–786. doi: 10.1136/jmg.2008.059980Google Scholar
    • 16. Chen SN, Ballantyne CM, Gotto AM, Tan Y, Willerson JT, Marian AJ. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis.J Am Coll Cardiol. 2005; 45:1611–1619. doi: 10.1016/j.jacc.2005.01.051Google Scholar
    • 17. Slimani A, Hrira MY, Najah M, Jomaa W, Maatouk F, Hamda KB, Abifadel M, Rabès JP, Boileau C, Rouis M, et al.. PCSK9 polymorphism in a Tunisian cohort: identification of a new allele, L8, and association of allele L10 with reduced coronary heart disease risk.Mol Cell Probes. 2015; 29:1–6. doi: 10.1016/j.mcp.2014.09.001Google Scholar
    • 18. Yue P, Averna M, Lin X, Schonfeld G. The c.43_44insCTG variation in PCSK9 is associated with low plasma LDL-cholesterol in a Caucasian population.Hum Mutat. 2006; 27:460–466. doi: 10.1002/humu.20316Google Scholar
    • 19. Görlich D, Hartmann E, Prehn S, Rapoport TA. A protein of the endoplasmic reticulum involved early in polypeptide translocation.Nature. 1992; 357:47–52. doi: 10.1038/357047a0Google Scholar
    • 20. Gilmore R. Protein translocation across the endoplasmic reticulum: a tunnel with toll booths at entry and exit.Cell. 1993; 75:589–592. doi: 10.1016/0092-8674(93)90476-7Google Scholar
    • 21. Blobel G, Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma.J Cell Biol. 1975; 67:835–851. doi: 10.1083/jcb.67.3.835Google Scholar
    • 22. Palacios L, Grandoso L, Cuevas N, Olano-Martín E, Martinez A, Tejedor D, Stef M. Molecular characterization of familial hypercholesterolemia in Spain.Atherosclerosis. 2012; 221:137–142. doi: 10.1016/j.atherosclerosis.2011.12.021Google Scholar
    • 23. Solanas-Barca M, de Castro-Orós I, Mateo-Gallego R, Cofán M, Plana N, Puzo J, Burillo E, Martín-Fuentes P, Ros E, Masana L, et al.. Apolipoprotein E gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia.Atherosclerosis. 2012; 222:449–455. doi: 10.1016/j.atherosclerosis.2012.03.011Google Scholar
    • 24. Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, Wiklund O, Hegele RA, Raal FJ, Defesche JC, et al.; European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: consensus statement of the European Atherosclerosis Society.Eur Heart J. 2013; 34:3478–390a. doi: 10.1093/eurheartj/eht273Google Scholar
    • 25. McNutt MC, Lagace TA, Horton JD. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells.J Biol Chem. 2007; 282:20799–20803. doi: 10.1074/jbc.C700095200Google Scholar
    • 26. Homer VM, Marais AD, Charlton F, Laurie AD, Hurndell N, Scott R, Mangili F, Sullivan DR, Barter PJ, Rye KA, et al.. Identification and characterization of two non-secreted PCSK9 mutants associated with familial hypercholesterolemia in cohorts from New Zealand and South Africa.Atherosclerosis. 2008; 196:659–666. doi: 10.1016/j.atherosclerosis.2007.07.022Google Scholar
    • 27. Uribe KB, Chemello K, Larrea-Sebal A, Benito-Vicente A, Galicia-Garcia U, Bourane S, Jaafar AK, Lambert G, Martín C. A Systematic approach to assess the activity and classification of PCSK9 variants.Int J Mol Sci. 2021; 22:13602. doi: 10.3390/ijms222413602Google Scholar
    • 28. Etxebarria A, Benito-Vicente A, Alves AC, Ostolaza H, Bourbon M, Martin C. Advantages and versatility of fluorescence-based methodology to characterize the functionality of LDLR and class mutation assignment.PLoS One. 2014; 9:e112677. doi: 10.1371/journal.pone.0112677Google Scholar
    • 29. Maglio C, Mancina RM, Motta BM, Stef M, Pirazzi C, Palacios L, Askaryar N, Borén J, Wiklund O, Romeo S. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing.J Intern Med. 2014; 276:396–403. doi: 10.1111/joim.12263Google Scholar
    • 30. Dron JS, Hegele RA. Complexity of mechanisms among human proprotein convertase subtilisin-kexin type 9 variants.Curr Opin Lipidol. 2017; 28:161–169. doi: 10.1097/MOL.0000000000000386Google Scholar
    • 31. Poirier S, Mayer G, Poupon V, McPherson PS, Desjardins R, Ly K, Asselin MC, Day R, Duclos FJ, Witmer M, et al.. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route.J Biol Chem. 2009; 284:28856–28864. doi: 10.1074/jbc.M109.037085Google Scholar
    • 32. Walter P, Ibrahimi I, Blobel G. Translocation of proteins across the endoplasmic reticulum. I. Signal Recognition Protein (SRP) binds to in-vitro-assembled polysomes synthesizing secretory protein.J Cell Biol. 1981; 91(2 Pt 1):545–550. doi: 10.1083/jcb.91.2.545Google Scholar
    • 33. Rapoport TA. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes.Nature. 2007; 450:663–669. doi: 10.1038/nature06384Google Scholar
    • 34. Nilsson I, Whitley P, von Heijne G. The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase.J Cell Biol. 1994; 126:1127–1132. doi: 10.1083/jcb.126.5.1127Google Scholar
    • 35. Amaya Y, Nakai T, Miura S. Evolutionary well-conserved region in the signal peptide of parathyroid hormone-related protein is critical for its dual localization through the regulation of ER translocation.J Biochem. 2016; 159:393–406. doi: 10.1093/jb/mvv111Google Scholar
    • 36. Arenz S, Ramu H, Gupta P, Berninghausen O, Beckmann R, Vázquez-Laslop N, Mankin AS, Wilson DN. Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide.Nat Commun. 2014; 5:3501. doi: 10.1038/ncomms4501Google Scholar
    • 37. Arenz S, Meydan S, Starosta AL, Berninghausen O, Beckmann R, Vázquez-Laslop N, Wilson DN. Drug sensing by the ribosome induces translational arrest via active site perturbation.Mol Cell. 2014; 56:446–452. doi: 10.1016/j.molcel.2014.09.014Google Scholar
    • 38. Strøm TB, Tveten K, Leren TP. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum.Biochem J. 2014; 457:99–105. doi: 10.1042/BJ20130930Google Scholar
    • 39. Roubtsova A, Chamberland A, Marcinkiewicz J, Essalmani R, Fazel A, Bergeron JJ, Seidah NG, Prat A. PCSK9 deficiency unmasks a sex- and tissue-specific subcellular distribution of the LDL and VLDL receptors in mice.J Lipid Res. 2015; 56:2133–2142. doi: 10.1194/jlr.M061952Google Scholar
    • 40. Kwon HJ, Lagace TA, McNutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9.Proc Natl Acad Sci USA. 2008; 105:1820–1825. doi: 10.1073/pnas.0712064105Google Scholar
    • 41. Poirier S, Mamarbachi M, Chen WT, Lee AS, Mayer G. GRP94 regulates circulating cholesterol levels through blockade of PCSK9-Induced LDLR degradation.Cell Rep. 2015; 13:2064–2071. doi: 10.1016/j.celrep.2015.11.006Google Scholar
    • 42. Holla ØL, Cameron J, Berge KE, Ranheim T, Leren TP. Degradation of the LDL receptors by PCSK9 is not mediated by a secreted protein acted upon by PCSK9 extracellularly.BMC Cell Biol. 2007; 8:9. doi: 10.1186/1471-2121-8-9Google Scholar
    • 43. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G. Molecular code for transmembrane-helix recognition by the Sec61 translocon.Nature. 2007; 450:1026–1030. doi: 10.1038/nature06387Google Scholar
    • 44. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein.J Mol Biol. 1982; 157:105–132. doi: 10.1016/0022-2836(82)90515-0Google Scholar
    • 45. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the expasy server. (In) Walker John M. (ed): The Proteomics Protocols Handbook, Humana Press. 2005:pp. 571–607.Google Scholar
    • 46. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction.Nat Protoc. 2010; 5:725–738. doi: 10.1038/nprot.2010.5Google Scholar
    • 47. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction.Nat Methods. 2015; 12:7–8. doi: 10.1038/nmeth.3213Google Scholar
    • 48. Zhang Y. I-TASSER server for protein 3d structure prediction.BMC Bioinformatics. 2008; 9:40. doi: 10.1186/1471-2105-9-40Google Scholar
    • 49. Osinalde N, Sánchez-Quiles V, Akimov V, Blagoev B, Kratchmarova I. SILAC-based quantification of changes in protein tyrosine phosphorylation induced by Interleukin-2 (IL-2) and IL-15 in T-lymphocytes.Data Brief. 2015; 5:53–58. doi: 10.1016/j.dib.2015.08.007Google Scholar
    • 50. Carvalho AS, Ribeiro H, Voabil P, Penque D, Jensen ON, Molina H, Matthiesen R. Global mass spectrometry and transcriptomics array based drug profiling provides novel insight into glucosamine induced endoplasmic reticulum stress.Mol Cell Proteomics. 2014; 13:3294–3307. doi: 10.1074/mcp.M113.034363Google Scholar

    Sign In

    If you have AHA member/subscription access to this content, please .

    Or Purchase

    Restore content access
    This functionality works only for purchases made as a guest