Skip main navigation
×

DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function

Originally publishedhttps://doi.org/10.1161/ATVBAHA.122.317565Arteriosclerosis, Thrombosis, and Vascular Biology. 2022;42:886–902

Background:

The vascular endothelium maintains tissue-fluid homeostasis by controlling the passage of large molecules and fluid between the blood and interstitial space. The interaction of catenins and the actin cytoskeleton with VE-cadherin (vascular endothelial cadherin) is the primary mechanism for stabilizing AJs (adherens junctions), thereby preventing lung vascular barrier disruption. Members of the Rho (Ras homology) family of GTPases and conventional GEFs (guanine exchange factors) of these GTPases have been demonstrated to play important roles in regulating endothelial permeability. Here, we evaluated the role of DOCK4 (dedicator of cytokinesis 4)—an unconventional Rho family GTPase GEF in vascular function.

Methods:

We generated mice deficient in DOCK4‚ used DOCK4 silencing and reconstitution approaches in human pulmonary artery endothelial cells‚ used assays to evaluate protein localization, endothelial cell permeability, and small GTPase activation.

Results:

Our data show that DOCK4-deficient mice are viable. However, these mice have hemorrhage selectively in the lung, incomplete smooth muscle cell coverage in pulmonary vessels, increased basal microvascular permeability, and impaired response to S1P (sphingosine-1-phosphate)–induced reversal of thrombin-induced permeability. Consistent with this, DOCK4 rapidly translocates to the cell periphery and associates with the detergent-insoluble fraction following S1P treatment, and its absence prevents S1P-induced Rac-1 activation and enhancement of barrier function. Moreover, DOCK4-silenced pulmonary artery endothelial cells exhibit enhanced basal permeability in vitro that is associated with enhanced Rho GTPase activation.

Conclusions:

Our findings indicate that DOCK4 maintains AJs necessary for lung vascular barrier function by establishing the normal balance between RhoA (Ras homolog family member A) and Rac-1–mediated actin cytoskeleton remodeling, a previously unappreciated function for the atypical GEF family of molecules. Our studies also identify S1P as a potential upstream regulator of DOCK4 activity.

Footnotes

*P. Yazbeck and F. Cullere contributed equally.

For Sources of Funding and Disclosures, see page 900.

Correspondence to: Tanya N. Mayadas, PhD, Brigham and Women’s Hospital and Harvard Medical School, NRB 752, 77 Avenue Louis Pasteur, Boston, MA 02115. Email

References

  • 1. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability.Physiol Rev. 2006; 86:279–367. doi: 10.1152/physrev.00012.2005Google Scholar
  • 2. Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment.Annu Rev Pathol. 2011; 6:147–163. doi: 10.1146/annurev-pathol-011110-130158Google Scholar
  • 3. Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability.Pulm Circ. 2014; 4:535–551. doi: 10.1086/677356Google Scholar
  • 4. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins.Cell. 2007; 129:865–877. doi: 10.1016/j.cell.2007.05.018Google Scholar
  • 5. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors.Nat Rev Mol Cell Biol. 2005; 6:167–180. doi: 10.1038/nrm1587Google Scholar
  • 6. van Buul JD, Geerts D, Huveneers S. Rho GAPs and GEFs: controling switches in endothelial cell adhesion.Cell Adh Migr. 2014; 8:108–124. doi: 10.4161/cam.27599Google Scholar
  • 7. Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O. Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice.Development. 2015; 142:3058–3070. doi: 10.1242/dev.125260Google Scholar
  • 8. Yuan L, Sacharidou A, Stratman AN, Le Bras A, Zwiers PJ, Spokes K, Bhasin M, Shih SC, Nagy JA, Molema G, et al.. RhoJ is an endothelial cell-restricted Rho GTPase that mediates vascular morphogenesis and is regulated by the transcription factor ERG.Blood. 2011; 118:1145–1153. doi: 10.1182/blood-2010-10-315275Google Scholar
  • 9. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J. Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis.Mol Cell Biol. 2006; 26:4830–4842. doi: 10.1128/MCB.02215-05Google Scholar
  • 10. Mertens AE, Roovers RC, Collard JG. Regulation of Tiam1-Rac signalling.FEBS Lett. 2003; 546:11–16. doi: 10.1016/s0014-5793(03)00435-6Google Scholar
  • 11. Amado-Azevedo J, de Menezes RX, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL. A functional siRNA screen identifies RhoGTPase-associated genes involved in thrombin-induced endothelial permeability.PLoS One. 2018; 13:e0201231. doi: 10.1371/journal.pone.0201231Google Scholar
  • 12. Kather JN, Kroll J. Rho guanine exchange factors in blood vessels: fine-tuners of angiogenesis and vascular function.Exp Cell Res. 2013; 319:1289–1297. doi: 10.1016/j.yexcr.2012.12.015Google Scholar
  • 13. Côté JF, Vuori K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity.J Cell Sci. 2002; 115(pt 24):4901–4913. doi: 10.1242/jcs.00219Google Scholar
  • 14. Meller N, Irani-Tehrani M, Kiosses WB, Del Pozo MA, Schwartz MA. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins.Nat Cell Biol. 2002; 4:639–647. doi: 10.1038/ncb835Google Scholar
  • 15. Côté JF, Motoyama AB, Bush JA, Vuori K. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signalling.Nat Cell Biol. 2005; 7:797–807. doi: 10.1038/ncb1280Google Scholar
  • 16. Premkumar L, Bobkov AA, Patel M, Jaroszewski L, Bankston LA, Stec B, Vuori K, Côté JF, Liddington RC. Structural basis of membrane targeting by the Dock180 family of Rho family guanine exchange factors (Rho-GEFs).J Biol Chem. 2010; 285:13211–13222. doi: 10.1074/jbc.M110.102517Google Scholar
  • 17. Hasegawa H, Kiyokawa E, Tanaka S, Nagashima K, Gotoh N, Shibuya M, Kurata T, Matsuda M. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane.Mol Cell Biol. 1996; 16:1770–1776. doi: 10.1128/MCB.16.4.1770Google Scholar
  • 18. Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180.Genes Dev. 1998; 12:3331–3336. doi: 10.1101/gad.12.21.3331Google Scholar
  • 19. Gumienny TL, Brugnera E, Tosello-Trampont AC, Kinchen JM, Haney LB, Nishiwaki K, Walk SF, Nemergut ME, Macara IG, Francis R, et al.. CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration.Cell. 2001; 107:27–41. doi: 10.1016/s0092-8674(01)00520-7Google Scholar
  • 20. Laurin M, Côté JF. Insights into the biological functions of Dock family guanine nucleotide exchange factors.Genes Dev. 2014; 28:533–547. doi: 10.1101/gad.236349.113Google Scholar
  • 21. Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease.Eur J Cell Biol. 2014; 93:466–477. doi: 10.1016/j.ejcb.2014.06.003Google Scholar
  • 22. Kunimura K, Uruno T, Fukui Y. DOCK family proteins: key players in immune surveillance mechanisms.Int Immunol. 2020; 32:5–15. doi: 10.1093/intimm/dxz067Google Scholar
  • 23. Nishikimi A, Kukimoto-Niino M, Yokoyama S, Fukui Y. Immune regulatory functions of DOCK family proteins in health and disease.Exp Cell Res. 2013; 319:2343–2349. doi: 10.1016/j.yexcr.2013.07.024Google Scholar
  • 24. Pakes NK, Veltman DM, Williams RS. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease.Small GTPases. 2013; 4:22–27. doi: 10.4161/sgtp.22087Google Scholar
  • 25. Hernández-Vásquez MN, Adame-García SR, Hamoud N, Chidiac R, Reyes-Cruz G, Gratton JP, Côté JF, Vázquez-Prado J. Cell adhesion controlled by adhesion G protein-coupled receptor GPR124/ADGRA2 is mediated by a protein complex comprising intersectins and Elmo-Dock.J Biol Chem. 2017; 292:12178–12191. doi: 10.1074/jbc.M117.780304Google Scholar
  • 26. Schäker K, Bartsch S, Patry C, Stoll SJ, Hillebrands JL, Wieland T, Kroll J. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development.J Biol Chem. 2015; 290:6408–6418. doi: 10.1074/jbc.M114.633701Google Scholar
  • 27. Sanematsu F, Hirashima M, Laurin M, Takii R, Nishikimi A, Kitajima K, Ding G, Noda M, Murata Y, Tanaka Y, et al.. DOCK180 is a Rac activator that regulates cardiovascular development by acting downstream of CXCR4.Circ Res. 2010; 107:1102–1105. doi: 10.1161/CIRCRESAHA.110.223388Google Scholar
  • 28. Abraham S, Scarcia M, Bagshaw RD, McMahon K, Grant G, Harvey T, Yeo M, Esteves FOG, Thygesen HH, Jones PF, et al.. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis.Nat Commun. 2015; 6:7286. doi: 10.1038/ncomms8286Google Scholar
  • 29. Curry FR, Adamson RH. Tonic regulation of vascular permeability.Acta Physiol (Oxf). 2013; 207:628–649. doi: 10.1111/apha.12076Google Scholar
  • 30. Radeva MY, Waschke J. Mind the gap: mechanisms regulating the endothelial barrier.Acta Physiol (Oxf). 2018; 222:1-20. doi: 10.1111/apha.12860Google Scholar
  • 31. Krump-Konvalinkova V, Yasuda S, Rubic T, Makarova N, Mages J, Erl W, Vosseler C, Kirkpatrick CJ, Tigyi G, Siess W. Stable knock-down of the sphingosine 1-phosphate receptor S1P1 influences multiple functions of human endothelial cells.Arterioscler Thromb Vasc Biol. 2005; 25:546–552. doi: 10.1161/01.ATV.0000154360.36106.d9Google Scholar
  • 32. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN, Palmer D, Pham TH, Wong JS, Pappu R, Coughlin SR. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice.J Clin Invest. 2009; 119:1871–1879. doi: 10.1172/jci38575Google Scholar
  • 33. Oo ML, Chang SH, Thangada S, Wu MT, Rezaul K, Blaho V, Hwang SI, Han DK, Hla T. Engagement of S1P1-degradative mechanisms leads to vascular leak in mice.J Clin Invest. 2011; 121:2290–2300. doi: 10.1172/JCI45403Google Scholar
  • 34. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, et al.. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development.Dev Cell. 2012; 23:600–610. doi: 10.1016/j.devcel.2012.07.015Google Scholar
  • 35. Burg N, Swendeman S, Worgall S, Hla T, Salmon JE. Sphingosine 1-phosphate receptor 1 signaling maintains endothelial cell barrier function and protects against immune complex-induced vascular injury.Arthritis Rheumatol. 2018; 70:1879–1889. doi: 10.1002/art.40558Google Scholar
  • 36. Christensen PM, Liu CH, Swendeman SL, Obinata H, Qvortrup K, Nielsen LB, Hla T, Di Lorenzo A, Christoffersen C. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1.FASEB J. 2016; 30:2351–2359. doi: 10.1096/fj.201500064Google Scholar
  • 37. McVerry BJ, Garcia JG. Endothelial cell barrier regulation by sphingosine 1-phosphate.J Cell Biochem. 2004; 92:1075–1085. doi: 10.1002/jcb.20088Google Scholar
  • 38. Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H, Saba J, Vogel SM, Malik AB, Mehta D. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells.Circ Res. 2008; 103:1164–1172. doi: 10.1161/01.RES.0000338501.84810.51Google Scholar
  • 39. Sun JF, Phung T, Shiojima I, Felske T, Upalakalin JN, Feng D, Kornaga T, Dor T, Dvorak AM, Walsh K, et al.. Microvascular patterning is controlled by fine-tuning the Akt signal.Proc Natl Acad Sci USA. 2005; 102:128–133. doi: 10.1073/pnas.0403198102Google Scholar
  • 40. Payne S, De Val S, Neal A. Endothelial-specific Cre mouse models.Arterioscler Thromb Vasc Biol. 2018; 38:2550–2561. doi: 10.1161/ATVBAHA.118.309669Google Scholar
  • 41. Lu N, Sargent KM, Clopton DT, Pohlmeier WE, Brauer VM, McFee RM, Weber JS, Ferrara N, Silversides DW, Cupp AS. Loss of vascular endothelial growth factor A (VEGFA) isoforms in the testes of male mice causes subfertility, reduces sperm numbers, and alters expression of genes that regulate undifferentiated spermatogonia.Endocrinology. 2013; 154:4790–4802. doi: 10.1210/en.2013-1363Google Scholar
  • 42. Aivatiadou E, Mattei E, Ceriani M, Tilia L, Berruti G. Impaired fertility and spermiogenetic disorders with loss of cell adhesion in male mice expressing an interfering Rap1 mutant.Mol Biol Cell. 2007; 18:1530–1542. doi: 10.1091/mbc.e06-10-0902Google Scholar
  • 43. Venkatesh D, Mruk D, Herter JM, Cullere X, Chojnacka K, Cheng CY, Mayadas TN. AKAP9, a regulator of microtubule dynamics, contributes to blood-testis barrier function.Am J Pathol. 2016; 186:270–284. doi: 10.1016/j.ajpath.2015.10.007Google Scholar
  • 44. Niaudet C, Hofmann JJ, Mäe MA, Jung B, Gaengel K, Vanlandewijck M, Ekvärn E, Salvado MD, Mehlem A, Al Sayegh S, et al.. Gpr116 receptor regulates distinctive functions in pneumocytes and vascular endothelium.PLoS One. 2015; 10:e0137949. doi: 10.1371/journal.pone.0137949Google Scholar
  • 45. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, et al.. Pericytes regulate the blood-brain barrier.Nature. 2010; 468:557–561. doi: 10.1038/nature09522Google Scholar
  • 46. Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study.J Biophys Biochem Cytol. 1961; 11:607–626. doi: 10.1083/jcb.11.3.607Google Scholar
  • 47. Kersemans V, Cornelissen B, Allen PD, Beech JS, Smart SC. Subcutaneous tumor volume measurement in the awake, manually restrained mouse using MRI.J Magn Reson Imaging. 2013; 37:1499–1504. doi: 10.1002/jmri.23829Google Scholar
  • 48. Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice.Cancer Chemother Pharmacol. 1989; 24:148–154. doi: 10.1007/BF00300234Google Scholar
  • 49. Engelbrecht E, Levesque MV, He L, Vanlandewijck M, Nitzsche A, Niazi H, Kuo A, Singh SA, Aikawa M, Holton K, et al.. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta.Elife. 2020; 9:e52690. doi: 10.7554/eLife.52690Google Scholar
  • 50. Yazbeck P, Tauseef M, Kruse K, Amin MR, Sheikh R, Feske S, Komarova Y, Mehta D. STIM1 phosphorylation at Y361 recruits orai1 to STIM1 puncta and induces Ca2+ entry.Sci Rep. 2017; 7:42758. doi: 10.1038/srep42758Google Scholar
  • 51. Chavez A, Schmidt TT, Yazbeck P, Rajput C, Desai B, Sukriti S, Giantsos-Adams K, Knezevic N, Malik AB, Mehta D. S1PR1 Tyr143 phosphorylation downregulates endothelial cell surface S1PR1 expression and responsiveness.J Cell Sci. 2015; 128:878–887. doi: 10.1242/jcs.154476Google Scholar
  • 52. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, Doan M, Ding L, Rafelski SM, Thirstrup D, et al.. CellProfiler 3.0: next-generation image processing for biology.PLoS Biol. 2018; 16:e2005970. doi: 10.1371/journal.pbio.2005970Google Scholar
  • 53. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016. https://ggplot2.tidyverse.org.Google Scholar
  • 54. Rosner B, Glynn RJ, Lee ML. Extension of the rank sum test for clustered data: two-group comparisons with group membership defined at the subunit level.Biometrics. 2006; 62:1251–1259. doi: 10.1111/j.1541-0420.2006.00582.xGoogle Scholar
  • 55. Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kiliç K, Can A, Di Polo A, Dalkara T. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection.Elife. 2018; 7:e34861. doi: 10.7554/eLife.34861Google Scholar
  • 56. Marchesi VT. The passage of colloidal carbon through the inflamed endothelium.Proc Roay Soc B. 1962; 156:550–552.Google Scholar
  • 57. Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnström J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, et al.. Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M.Proc Natl Acad Sci USA. 2011; 108:9613–9618. doi: 10.1073/pnas.1103187108Google Scholar
  • 58. Obinata H, Kuo A, Wada Y, Swendeman S, Liu CH, Blaho VA, Nagumo R, Satoh K, Izumi T, Hla T. Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice.J Lipid Res. 2019; 60:1912–1921. doi: 10.1194/jlr.RA119000277Google Scholar
  • 59. Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy.Science. 2019; 366:eaar5551. doi: 10.1126/science.aar5551Google Scholar
  • 60. Lee MH, Appleton KM, El-Shewy HM, Sorci-Thomas MG, Thomas MJ, Lopes-Virella MF, Luttrell LM, Hammad SM, Klein RL. S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization.J Lipid Res. 2017; 58:325–338. doi: 10.1194/jlr.M070706Google Scholar
  • 61. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y, Bonkovsky HL, Parikh NS, Habrukowich C, Hla T. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate.Circ Res. 2008; 102:669–676. doi: 10.1161/CIRCRESAHA.107.165845Google Scholar
  • 62. Kono M, Tucker AE, Tran J, Bergner JB, Turner EM, Proia RL. Sphingosine-1-phosphate receptor 1 reporter mice reveal receptor activation sites in vivo.J Clin Invest. 2014; 124:2076–2086. doi: 10.1172/JCI71194Google Scholar
  • 63. Kono M, Conlon EG, Lux SY, Yanagida K, Hla T, Proia RL. Bioluminescence imaging of G protein-coupled receptor activation in living mice.Nat Commun. 2017; 8:1163. doi: 10.1038/s41467-017-01340-7Google Scholar
  • 64. Reinhard NR, Mastop M, Yin T, Wu Y, Bosma EK, Gadella TWJ, Goedhart J, Hordijk PL. The balance between Gαi-Cdc42/Rac and Gα12/13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate.Mol Biol Cell. 2017; 28:3371–3382. doi: 10.1091/mbc.E17-03-0136Google Scholar
  • 65. Wilkerson BA, Argraves KM. The role of sphingosine-1-phosphate in endothelial barrier function.Biochim Biophys Acta. 2014; 1841:1403–1412. doi: 10.1016/j.bbalip.2014.06.012Google Scholar
  • 66. Xiong Y, Hla T. S1P control of endothelial integrity.Curr Top Microbiol Immunol. 2014; 378:85–105. doi: 10.1007/978-3-319-05879-5_4Google Scholar
  • 67. Shikata Y, Birukov KG, Garcia JG. S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin.J Appl Physiol (1985). 2003; 94:1193–1203. doi: 10.1152/japplphysiol.00690.2002Google Scholar
  • 68. Belvitch P, Htwe YM, Brown ME, Dudek S. Cortical actin dynamics in endothelial permeability.Curr Top Membr. 2018; 82:141–195. doi: 10.1016/bs.ctm.2018.09.003Google Scholar
  • 69. Abbasi T, Garcia JG. Sphingolipids in lung endothelial biology and regulation of vascular integrity.Handb Exp Pharmacol. 2013;216:201–226. doi: 10.1007/978-3-7091-1511-4_10Google Scholar
  • 70. Carbajal JM, Schaeffer RC. RhoA inactivation enhances endothelial barrier function.Am J Physiol. 1999; 277(5 Pt 1):C955–C964. doi: 10.1152/ajpcell.1999.277.5.C955Google Scholar
  • 71. Wójciak-Stothard B, Potempa S, Eichholtz T, Ridley AJ. Rho and Rac but not Cdc42 regulate endothelial cell permeability.J Cell Sci. 2001; 114(pt 7):1343–1355. doi: 10.1242/jcs.114.7.1343Google Scholar
  • 72. van Nieuw Amerongen GP, Beckers CM, Achekar ID, Zeeman S, Musters RJ, van Hinsbergh VW. Involvement of Rho kinase in endothelial barrier maintenance.Arterioscler Thromb Vasc Biol. 2007; 27:2332–2339. doi: 10.1161/ATVBAHA.107.152322Google Scholar
  • 73. Vouret-Craviari V, Boquet P, Pouysségur J, Van Obberghen-Schilling E. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function.Mol Biol Cell. 1998; 9:2639–2653. doi: 10.1091/mbc.9.9.2639Google Scholar
  • 74. Cao J, Ehling M, März S, Seebach J, Tarbashevich K, Sixta T, Pitulescu ME, Werner AC, Flach B, Montanez E, et al.. Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis.Nat Commun. 2017; 8:2210. doi: 10.1038/s41467-017-02373-8Google Scholar
  • 75. Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function.Cardiovasc Res. 2010; 87:272–280. doi: 10.1093/cvr/cvq144Google Scholar
  • 76. Tan W, Palmby TR, Gavard J, Amornphimoltham P, Zheng Y, Gutkind JS. An essential role for Rac1 in endothelial cell function and vascular development.FASEB J. 2008; 22:1829–1838. doi: 10.1096/fj.07-096438Google Scholar
  • 77. Nohata N, Uchida Y, Stratman AN, Adams RH, Zheng Y, Weinstein BM, Mukouyama YS, Gutkind JS. Temporal-specific roles of Rac1 during vascular development and retinal angiogenesis.Dev Biol. 2016; 411:183–194. doi: 10.1016/j.ydbio.2016.02.005Google Scholar
  • 78. Fiedler LR. Rac1 regulates cardiovascular development and postnatal function of endothelium.Cell Adh Migr. 2009; 3:143–145. doi: 10.4161/cam.3.2.8279Google Scholar
  • 79. Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies.Nat Rev Mol Cell Biol. 2008; 9:690–701. doi: 10.1038/nrm2476Google Scholar
  • 80. Zahra FT, Sajib MS, Ichiyama Y, Akwii RG, Tullar PE, Cobos C, Minchew SA, Doçi CL, Zheng Y, Kubota Y, et al.. Endothelial RhoA GTPase is essential for in vitro endothelial functions but dispensable for physiological in vivo angiogenesis.Sci Rep. 2019; 9:11666. doi: 10.1038/s41598-019-48053-zGoogle Scholar
  • 81. Chang L, Yang J, Jo CH, Boland A, Zhang Z, McLaughlin SH, Abu-Thuraia A, Killoran RC, Smith MJ, Côté JF, et al.. Structure of the DOCK2-ELMO1 complex provides insights into regulation of the auto-inhibited state.Nat Commun. 2020; 11:3464. doi: 10.1038/s41467-020-17271-9Google Scholar
  • 82. Sweeney M, Foldes G. It takes two: endothelial-perivascular cell cross-talk in vascular development and disease.Front Cardiovasc Med. 2018; 5:154. doi: 10.3389/fcvm.2018.00154Google Scholar
  • 83. Su VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks.Open Biol. 2020; 10:200263. doi: 10.1098/rsob.200263Google Scholar
  • 84. Méndez-Barbero N, Gutiérrez-Muñoz C, Blanco-Colio LM. Cellular crosstalk between endothelial and smooth muscle cells in vascular wall remodeling.Int J Mol Sci. 2021; 22:7284. doi: 10.3390/ijms22147284Google Scholar
  • 85. Liu Y, Wada R, Yamashita T, Mi Y, Deng CX, Hobson JP, Rosenfeldt HM, Nava VE, Chae SS, Lee MJ, et al.. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation.J Clin Invest. 2000; 106:951–961. doi: 10.1172/JCI10905Google Scholar
  • 86. Paik JH, Skoura A, Chae SS, Cowan AE, Han DK, Proia RL, Hla T. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization.Genes Dev. 2004; 18:2392–2403. doi: 10.1101/gad.1227804Google Scholar
  • 87. Allende ML, Yamashita T, Proia RL. G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation.Blood. 2003; 102:3665–3667. doi: 10.1182/blood-2003-02-0460Google Scholar
  • 88. Gaengel K, Niaudet C, Hagikura K, Laviña B, Siemsen BL, Muhl L, Hofmann JJ, Ebarasi L, Nyström S, Rymo S, et al.. The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2.Dev Cell. 2012; 23:587–599. doi: 10.1016/j.devcel.2012.08.005Google Scholar
  • 89. Yanagida K, Engelbrecht E, Niaudet C, Jung B, Gaengel K, Holton K, Swendeman S, Liu CH, Levesque MV, Kuo A, et al.. Sphingosine 1-phosphate receptor signaling establishes AP-1 gradients to allow for retinal endothelial cell specialization.Dev Cell. 2020; 52:779–793.e7. doi: 10.1016/j.devcel.2020.01.016Google Scholar
  • 90. Cartier A, Leigh T, Liu CH, Hla T. Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy.Proc Natl Acad Sci USA. 2020; 117:3157–3166. doi: 10.1073/pnas.1906246117Google Scholar
  • 91. Stevens T, Phan S, Frid MG, Alvarez D, Herzog E, Stenmark KR. Lung vascular cell heterogeneity: endothelium, smooth muscle, and fibroblasts.Proc Am Thorac Soc. 2008; 5:783–791. doi: 10.1513/pats.200803-027HRGoogle Scholar
  • 92. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms.Circ Res. 2007; 100:158–173. doi: 10.1161/01.RES.0000255691.76142.4aGoogle Scholar
  • 93. Yanagida K, Liu CH, Faraco G, Galvani S, Smith HK, Burg N, Anrather J, Sanchez T, Iadecola C, Hla T. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1.Proc Natl Acad Sci USA. 2017; 114:4531–4536. doi: 10.1073/pnas.1618659114Google Scholar
  • 94. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, Furuse M, Tsukita S. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice.J Cell Biol. 2003; 161:653–660. doi: 10.1083/jcb.200302070Google Scholar
  • 95. Claesson-Welsh L, Dejana E, McDonald DM. Permeability of the endothelial barrier: identifying and reconciling controversies.Trends Mol Med. 2021; 27:314–331. doi: 10.1016/j.molmed.2020.11.006Google Scholar
  • 96. Balaji Ragunathrao VA, Anwar M, Akhter MZ, Chavez A, Mao Y, Natarajan V, Lakshmikanthan S, Chrzanowska-Wodnicka M, Dudek AZ, Claesson-Welsh L, et al.. Sphingosine-1-phosphate receptor 1 activity promotes tumor growth by amplifying VEGF-VEGFR2 angiogenic signaling.Cell Rep. 2019; 29:3472–3487.e4. doi: 10.1016/j.celrep.2019.11.036Google Scholar
  • 97. Knezevic N, Roy A, Timblin B, Konstantoulaki M, Sharma T, Malik AB, Mehta D. GDI-1 phosphorylation switch at serine 96 induces RhoA activation and increased endothelial permeability.Mol Cell Biol. 2007; 27:6323–6333. doi: 10.1128/MCB.00523-07Google Scholar
  • 98. Singh I, Knezevic N, Ahmmed GU, Kini V, Malik AB, Mehta D. Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin.J Biol Chem. 2007; 282:7833–7843. doi: 10.1074/jbc.M608288200Google Scholar
  • 99. Gorovoy M, Neamu R, Niu J, Vogel S, Predescu D, Miyoshi J, Takai Y, Kini V, Mehta D, Malik AB, et al.. RhoGDI-1 modulation of the activity of monomeric RhoGTPase RhoA regulates endothelial barrier function in mouse lungs.Circ Res. 2007; 101:50–58. doi: 10.1161/CIRCRESAHA.106.145847Google Scholar
  • 100. Daneshjou N, Sieracki N, van Nieuw Amerongen GP, Conway DE, Schwartz MA, Komarova YA, Malik AB. Rac1 functions as a reversible tension modulator to stabilize VE-cadherin trans-interaction.J Cell Biol. 2015; 208:23–32. doi: 10.1083/jcb.201409108Google Scholar
  • 101. Zebda N, Tian Y, Tian X, Gawlak G, Higginbotham K, Reynolds AB, Birukova AA, Birukov KG. Interaction of p190RhoGAP with C-terminal domain of p120-catenin modulates endothelial cytoskeleton and permeability.J Biol Chem. 2013; 288:18290–18299. doi: 10.1074/jbc.M112.432757Google Scholar
  • 102. Mehta D, Konstantoulaki M, Ahmmed GU, Malik AB. Sphingosine 1-phosphate-induced mobilization of intracellular Ca2+ mediates rac activation and adherens junction assembly in endothelial cells.J Biol Chem. 2005; 280:17320–17328. doi: 10.1074/jbc.M411674200Google Scholar
  • 103. Schmidt TT, Tauseef M, Yue L, Bonini MG, Gothert J, Shen TL, Guan JL, Predescu S, Sadikot R, Mehta D. Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities.Am J Physiol Lung Cell Mol Physiol. 2013; 305:L291–L300. doi: 10.1152/ajplung.00094.2013Google Scholar
  • 104. Ohta Y, Hartwig JH, Stossel TP. FilGAP, a Rho- and ROCK-regulated GAP for Rac binds filamin A to control actin remodelling.Nat Cell Biol. 2006; 8:803–814. doi: 10.1038/ncb1437Google Scholar
  • 105. Weng Z, Situ C, Lin L, Wu Z, Zhu J, Zhang R. Structure of BAI1/ELMO2 complex reveals an action mechanism of adhesion GPCRs via ELMO family scaffolds.Nat Commun. 2019; 10:51. doi: 10.1038/s41467-018-07938-9Google Scholar
  • 106. Feng H, Hu B, Liu KW, Li Y, Lu X, Cheng T, Yiin JJ, Lu S, Keezer S, Fenton T, et al.. Activation of Rac1 by Src-dependent phosphorylation of Dock180(Y1811) mediates PDGFRα-stimulated glioma tumorigenesis in mice and humans.J Clin Invest. 2011; 121:4670–4684. doi: 10.1172/JCI58559Google Scholar
  • 107. Laurin M, Huber J, Pelletier A, Houalla T, Park M, Fukui Y, Haibe-Kains B, Muller WJ, Côté JF. Rac-specific guanine nucleotide exchange factor DOCK1 is a critical regulator of HER2-mediated breast cancer metastasis.Proc Natl Acad Sci USA. 2013; 110:7434–7439. doi: 10.1073/pnas.1213050110Google Scholar
  • 108. Abu-Thuraia A, Gauthier R, Chidiac R, Fukui Y, Screaton RA, Gratton JP, Côté JF. Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion.Mol Cell Biol. 2015; 35:76–87. doi: 10.1128/MCB.00764-14Google Scholar
  • 109. Makihara S, Morin S, Ferent J, Côté JF, Yam PT, Charron F. Polarized dock activity drives Shh-mediated axon guidance.Dev Cell. 2018; 46:410–425.e7. doi: 10.1016/j.devcel.2018.07.007Google Scholar
  • 110. Hiramoto-Yamaki N, Takeuchi S, Ueda S, Harada K, Fujimoto S, Negishi M, Katoh H. Ephexin4 and EphA2 mediate cell migration through a RhoG-dependent mechanism.J Cell Biol. 2010; 190:461–477. doi: 10.1083/jcb.201005141Google Scholar
  • 111. Huang L, Chambliss KL, Gao X, Yuhanna IS, Behling-Kelly E, Bergaya S, Ahmed M, Michaely P, Luby-Phelps K, Darehshouri A, et al.. SR-B1 drives endothelial cell LDL transcytosis via DOCK4 to promote atherosclerosis.Nature. 2019; 569:565–569. doi: 10.1038/s41586-019-1140-4Google Scholar
  • 112. Li Q, Chen B, Zeng C, Fan A, Yuan Y, Guo X, Huang X, Huang Q. Differential activation of receptors and signal pathways upon stimulation by different doses of sphingosine-1-phosphate in endothelial cells.Exp Physiol. 2015; 100:95–107. doi: 10.1113/expphysiol.2014.082149Google Scholar
  • 113. Fu P, Shaaya M, Harijith A, Jacobson JR, Karginov A, Natarajan V. Sphingolipids signaling in lamellipodia formation and enhancement of endothelial barrier function.Curr Top Membr. 2018; 82:1–31. doi: 10.1016/bs.ctm.2018.08.007Google Scholar
  • 114. Xu X, Jin T. ELMO proteins transduce G protein-coupled receptor signal to control reorganization of actin cytoskeleton in chemotaxis of eukaryotic cells.Small GTPases. 2019; 10:271–279. doi: 10.1080/21541248.2017.1318816Google Scholar
  • 115. Damoulakis G, Gambardella L, Rossman KL, Lawson CD, Anderson KE, Fukui Y, Welch HC, Der CJ, Stephens LR, Hawkins PT. P-Rex1 directly activates RhoG to regulate GPCR-driven Rac signalling and actin polarity in neutrophils.J Cell Sci. 2014; 127(pt 11):2589–2600. doi: 10.1242/jcs.153049Google Scholar
  • 116. Nishikimi A, Fukuhara H, Su W, Hongu T, Takasuga S, Mihara H, Cao Q, Sanematsu F, Kanai M, Hasegawa H, et al.. Sequential regulation of DOCK2 dynamics by two phospholipids during neutrophil chemotaxis.Science. 2009; 324:384–387. doi: 10.1126/science.1170179Google Scholar
  • 117. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD. Incidence and outcomes of acute lung injury.N Engl J Med. 2005; 353:1685–1693. doi: 10.1056/NEJMoa050333Google Scholar

Sign In

If you have AHA member/subscription access to this content, please .

Or Purchase

Restore content access
This functionality works only for purchases made as a guest