Skip main navigation
×

Ambient Air Pollution and Atherosclerosis: A Potential Mediating Role of Sphingolipids

Originally publishedhttps://doi.org/10.1161/ATVBAHA.122.317753Arteriosclerosis, Thrombosis, and Vascular Biology. 2022;42:906–918

    Background:

    The pathophysiological mechanisms of air pollution-induced atherosclerosis are incompletely understood. Sphingolipids serve as biological intermediates during atherosclerosis development by facilitating production of proatherogenic apoB (apolipoprotein B)-containing lipoproteins. We explored whether sphingolipids mediate the proatherogenic effects of air pollution.

    Methods:

    This was a prospective panel study of 110 participants (mean age 56.5 years) followed from 2013 to 2015 in Beijing, China. Targeted lipidomic analyses were used to quantify 24 sphingolipids in 579 plasma samples. The mass concentrations of ambient particulate matter ≤2.5 μm in diameter (PM2.5) were continuously monitored by a fixed station. We evaluated the associations between sphingolipid levels and average PM2.5 concentrations 1–30 days before clinic visits using linear mixed-effects models and explored whether sphingolipids mediate PM2.5-associated changes in the levels of proatherogenic apoB-containing lipoproteins (LDL-C [low-density lipoprotein cholesterol] and non-HDL-C [nonhigh-density lipoprotein cholesterol]) using mediation analyses.

    Results:

    We observed significant increases in the levels of non-HDL-C and fourteen sphingolipids associated with PM2.5 exposure, from short- (14 days) to medium-term (30 days) exposure time windows. The associations exhibited near-monotonic increases and peaked in 30-day time window. Increased levels of the sphingolipids, namely, sphinganine, ceramide C24:0, sphingomyelins C16:0/C18:0/C18:1/C20:0/C22:0/C24:0, and hexosylceramides C16:0/C18:0/C20:0/C22:0/C24:0/C24:1 significantly mediated 32%, 58%, 35% to 93%, and 23% to 86%, respectively, of the positive association between 14-day PM2.5 average and the non-HDL-C level, but not the LDL-C level. Similar mediation effects (19%–91%) of the sphingolipids were also observed in 30-day time window.

    Conclusions:

    Our results suggest that sphingolipids may mediate the proatherogenic effects of short- and medium-term PM2.5 exposure.

    Footnotes

    *Y. Xu and Y. Han contributed equally.

    Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/ATVBAHA.122.317753.

    For Sources of Funding and Disclosures, see page 916.

    Correspondence to: Tong Zhu, ScD, BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing, China. Email

    References

    • 1. Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, et al.. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the global burden of diseases study 2015.Lancet. 2017; 389:1907–1918. doi: 10.1016/S0140-6736(17)30505-6Google Scholar
    • 2. Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, Daemen MJ, Demer LL, Hegele RA, Nicholls SJ, et al.. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the european atherosclerosis society consensus panel.Eur Heart J. 2020; 41:2313–2330. doi: 10.1093/eurheartj/ehz962Google Scholar
    • 3. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, et al..; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk.Eur Heart J. 2020; 41:111–188. doi: 10.1093/eurheartj/ehz455Google Scholar
    • 4. Tabas I, Williams KJ, Borén J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications.Circulation. 2007; 116:1832–1844. doi: 10.1161/CIRCULATIONAHA.106.676890Google Scholar
    • 5. McGuinn LA, Schneider A, McGarrah RW, Ward-Caviness C, Neas LM, Di Q, Schwartz J, Hauser ER, Kraus WE, et al.. Association of long-term PM2.5 exposure with traditional and novel lipid measures related to cardiovascular disease risk.Environ Int. 2019; 122:193–200. doi: 10.1016/j.envint.2018.11.001Google Scholar
    • 6. Yeatts K, Svendsen E, Creason J, Alexis N, Herbst M, Scott J, Kupper L, Williams R, Neas L, Cascio W, et al.. Coarse particulate matter (PM2.5-10) affects heart rate variability, blood lipids, and circulating eosinophils in adults with asthma.Environ Health Perspect. 2007; 115:709–714. doi: 10.1289/ehp.9499Google Scholar
    • 7. Zhang K, Wang H, He W, Chen G, Lu P, Xu R, Yu P, Ye T, Guo S, Li S, et al.. The association between ambient air pollution and blood lipids: a longitudinal study in Shijiazhuang, China.Sci Total Environ. 2021; 752:141648. doi: 10.1016/j.scitotenv.2020.141648Google Scholar
    • 8. Li J, Yao Y, Xie W, Wang B, Guan T, Han Y, Wang H, Zhu T, Xue T. Association of long-term exposure to PM2.5 with blood lipids in the chinese population: findings from a longitudinal quasi-experiment.Environ Int. 2021; 151:106454. doi: 10.1016/j.envint.2021.106454Google Scholar
    • 9. Chen Z, Salam MT, Toledo-Corral C, Watanabe RM, Xiang AH, Buchanan TA, Habre R, Bastain TM, Lurmann F, Wilson JP, et al.. Ambient air pollutants have adverse effects on insulin and glucose homeostasis in mexican americans.Diabetes Care. 2016; 39:547–554. doi: 10.2337/dc15-1795Google Scholar
    • 10. McGuinn LA, Coull BA, Kloog I, Just AC, Tamayo-Ortiz M, Osorio-Yanez C, Baccarelli AA, Wright RJ, Téllez-Rojo MM, Wright RO, et al.. Fine particulate matter exposure and lipid levels among children in mexico city.Environ Epidemiol. 2020; 4:e088. doi: 10.1097/EE9.0000000000000088Google Scholar
    • 11. Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution.Nat Rev Cardiol. 2020; 17:656–672. doi: 10.1038/s41569-020-0371-2Google Scholar
    • 12. Bevan GH, Al-Kindi SG, Brook RD, Münzel T, Rajagopalan S. Ambient air pollution and atherosclerosis: insights into dose, time, and mechanisms.Arterioscler Thromb Vasc Biol. 2021; 41:628–637. doi: 10.1161/ATVBAHA.120.315219Google Scholar
    • 13. Iqbal J, Walsh MT, Hammad SM, Hussain MM. Sphingolipids and lipoproteins in health and metabolic disorders.Trends Endocrinol Metab. 2017; 28:506–518. doi: 10.1016/j.tem.2017.03.005Google Scholar
    • 14. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids.Nat Rev Mol Cell Biol. 2008; 9:139–150. doi: 10.1038/nrm2329Google Scholar
    • 15. Chatterjee S, Bedja D, Mishra S, Amuzie C, Avolio A, Kass DA, Berkowitz D, Renehan M. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E-/- mice and rabbits fed a high-fat and -cholesterol diet.Circulation. 2014; 129:2403–2413. doi: 10.1161/CIRCULATIONAHA.113.007559Google Scholar
    • 16. Bietrix F, Lombardo E, van Roomen CP, Ottenhoff R, Vos M, Rensen PC, Verhoeven AJ, Aerts JM, Groen AK. Inhibition of glycosphingolipid synthesis induces a profound reduction of plasma cholesterol and inhibits atherosclerosis development in APOE*3 Leiden and low-density lipoprotein receptor-/- mice.Arterioscler Thromb Vasc Biol. 2010; 30:931–937. doi: 10.1161/ATVBAHA.109.201673Google Scholar
    • 17. Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD, et al.. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice.Circulation. 2004; 110:3465–3471. doi: 10.1161/01.CIR.0000148370.60535.22Google Scholar
    • 18. Park TS, Panek RL, Rekhter MD, Mueller SB, Rosebury WS, Robertson A, Hanselman JC, Kindt E, Homan R, Karathanasis SK, et al.. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice.Atherosclerosis. 2006; 189:264–272. doi: 10.1016/j.atherosclerosis.2005.12.029Google Scholar
    • 19. Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, et al.. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol.Eur Heart J. 2016; 37:1967–1976. doi: 10.1093/eurheartj/ehw148Google Scholar
    • 20. Hilvo M, Meikle PJ, Pedersen ER, Tell GS, Dhar I, Brenner H, Schöttker B, Lääperi M, Kauhanen D, Koistinen KM, et al.. Development and validation of a ceramide- and phospholipid-based cardiovascular risk estimation score for coronary artery disease patients.Eur Heart J. 2020; 41:371–380. doi: 10.1093/eurheartj/ehz387Google Scholar
    • 21. Li Q, Wang X, Pang J, Zhang Y, Zhang H, Xu Z, Chen Q, Ling W. Associations between plasma ceramides and mortality in patients with coronary artery disease.Atherosclerosis. 2020; 314:77–83. doi: 10.1016/j.atherosclerosis.2020.09.004Google Scholar
    • 22. Alshehry ZH, Mundra PA, Barlow CK, Mellett NA, Wong G, McConville MJ, Simes J, Tonkin AM, Sullivan DR, Barnes EH, et al.. Plasma lipidomic profiles improve on traditional risk factors for the prediction of cardiovascular events in type 2 diabetes mellitus.Circulation. 2016; 134:1637–1650. doi: 10.1161/CIRCULATIONAHA.116.023233Google Scholar
    • 23. Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman H, Nitulescu M, Persson AF, Fisher RM, Melander O, et al.. Sphingolipids contribute to human atherosclerotic plaque inflammation.Arterioscler Thromb Vasc Biol. 2016; 36:1132–1140. doi: 10.1161/ATVBAHA.116.305675Google Scholar
    • 24. Zhao C, Zhu L, Li R, Wang H, Cai Z. Omics approach reveals metabolic disorders associated with the cytotoxicity of airborne particulate matter in human lung carcinoma cells.Environ Pollut. 2019; 246:45–52. doi: 10.1016/j.envpol.2018.11.108Google Scholar
    • 25. Shaheen HM, Onoda A, Shinkai Y, Nakamura M, El-Ghoneimy AA, El-Sayed YS, Takeda K, Umezawa M. The ceramide inhibitor fumonisin B1 mitigates the pulmonary effects of low-dose diesel exhaust inhalation in mice.Ecotoxicol Environ Saf. 2016; 132:390–396. doi: 10.1016/j.ecoenv.2016.06.025Google Scholar
    • 26. Zhang J, Liang S, Ning R, Jiang J, Zhang J, Shen H, Chen R, Duan J, Sun Z. PM2.5-induced inflammation and lipidome alteration associated with the development of atherosclerosis based on a targeted lipidomic analysis.Environ Int. 2020; 136:105444. doi: 10.1016/j.envint.2019.105444Google Scholar
    • 27. Lietz M, Berges A, Lebrun S, Meurrens K, Steffen Y, Stolle K, Schueller J, Boue S, Vuillaume G, Vanscheeuwijck P, et al.. Cigarette-smoke-induced atherogenic lipid profiles in plasma and vascular tissue of apolipoprotein e-deficient mice are attenuated by smoking cessation.Atherosclerosis. 2013; 229:86–93. doi: 10.1016/j.atherosclerosis.2013.03.036Google Scholar
    • 28. Wang Y, Han Y, Zhu T, Li W, Zhang H. A prospective study (SCOPE) comparing the cardiometabolic and respiratory effects of air pollution exposure on healthy and pre-diabetic individuals.Sci China Life Sci. 2018; 61:46–56. doi: 10.1007/s11427-017-9074-2Google Scholar
    • 29. Wang T, Han Y, Li H, Wang Y, Chen X, Chen W, Qiu X, Gong J, Li W, Zhu T, et al.. Proinflammatory lipid signals trigger the health effects of air pollution in individuals with prediabetes.Environ Pollut. 2021; 290:118008. doi: 10.1016/j.envpol.2021.118008Google Scholar
    • 30. Association AD. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2020.Diabetes Care. 2020; 43:S14–S31. doi: 10.2337/dc20-S002Google Scholar
    • 31. Sullards MC, Liu Y, Chen Y, Merrill AH. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS).Biochim Biophys Acta. 2011; 1811:838–853. doi: 10.1016/j.bbalip.2011.06.027Google Scholar
    • 32. Xu Y, Li H, Han Y, Wang T, Wang Y, Gong J, Gao K, Chen W, Li W, Zhang H, et al.. A simple and rapid method for extraction and measurement of circulating sphingolipids using LC-MS/MS: a targeted lipidomic analysis.Anal Bioanal Chem. 2022; 414:2041–2054. doi: 10.1007/s00216-021-03853-zGoogle Scholar
    • 33. Guo S, Hu M, Zamora ML, Peng J, Shang D, Zheng J, Du Z, Wu Z, Shao M, Zeng L, et al.. Elucidating severe urban haze formation in china.Proc Natl Acad Sci U S A. 2014; 111:17373–17378. doi: 10.1073/pnas.1419604111Google Scholar
    • 34. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, et al.; American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the american heart association.Circulation. 2010; 121:2331–2378. doi: 10.1161/CIR.0b013e3181dbece1Google Scholar
    • 35. Gasparrini A, Armstrong B, Kenward MG. Distributed lag non-linear models.Stat Med. 2010; 29:2224–2234. doi: 10.1002/sim.3940Google Scholar
    • 36. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis.J Stat Softw. 2014; 59:38. doi: 10.18637/jss.v059.i05Google Scholar
    • 37. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing.J R Stat Soc Series B Stat Methodol. 1995; 57:289-300. doi: 10.1111/j.2517-6161.1995.tb02031.xGoogle Scholar
    • 38. National Bureau of Statistics of China. China Statistical Yearbook 2014. Beijing: China Statistics Press; 2014.Google Scholar
    • 39. Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, Thorand B, Giampaoli S, Brambilla P, Tunstall-Pedoe H, et al..; Multinational Cardiovascular Risk Consortium. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the multinational cardiovascular risk consortium.Lancet. 2019; 394:2173–2183. doi: 10.1016/S0140-6736(19)32519-XGoogle Scholar
    • 40. Armstrong MK, Fraser BJ, Hartiala O, Buscot M-J, Juonala M, Wu F, Koskinen J, Hutri-Kähönen N, Kähönen M, Laitinen TP, et al.. Association of non–high-density lipoprotein cholesterol measured in adolescence, young adulthood, and mid-adulthood with coronary artery calcification measured in mid-adulthood.JAMA Cardiol. 2021; 6:661–668. doi: 10.1001/jamacardio.2020.7238Google Scholar
    • 41. Frontini MG, Srinivasan SR, Xu JH, Tang R, Bond MG, Berenson G. Utility of non-high-density lipoprotein cholesterol versus other lipoprotein measures in detecting subclinical atherosclerosis in young adults (The Bogalusa Heart Study).Am J Cardiol. 2007; 100:64–68. doi: 10.1016/j.amjcard.2007.01.071Google Scholar
    • 42. Li R, Wang Y, Hou B, Lam SM, Zhang W, Chen R, Shui G, Sun Q, Qiang G, Liu C, et al.. Lipidomics insight into chronic exposure to ambient air pollution in mice.Environ Pollut. 2020; 262:114668. doi: 10.1016/j.envpol.2020.114668Google Scholar
    • 43. Nassan FL, Wang C, Kelly RS, Lasky-Su JA, Vokonas PS, Koutrakis P, Schwartz JD. Ambient PM2.5 species and ultrafine particle exposure and their differential metabolomic signatures.Environ Int. 2021; 151:106447. doi: 10.1016/j.envint.2021.106447Google Scholar
    • 44. Liu F, Chen X, Liu Y, Niu Z, Tang H, Mao S, Li N, Chen G, Xiang H. Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios.J Hazard Mater. 2021; 415:125590. doi: 10.1016/j.jhazmat.2021.125590Google Scholar
    • 45. Xu Y, Chen X, Han Y, Chen W, Wang T, Gong J, Fan Y, Zhang H, Zhang L, Li H, et al.. Ceramide metabolism mediates the impaired glucose homeostasis following short-term black carbon exposure: a targeted lipidomic analysis.Sci Total Environ. 2022; 829:154657. doi: 10.1016/j.scitotenv.2022.154657Google Scholar
    • 46. Edsfeldt A, Dunér P, Ståhlman M, Mollet IG, Asciutto G, Grufman H, Nitulescu M, Persson AF, Fisher RM, Melander O, et al.. Sphingolipids contribute to human atherosclerotic plaque inflammation.Arterioscler Thromb Vasc Biol. 2016; 36:1132–1140. doi: 10.1161/ATVBAHA.116.305675Google Scholar
    • 47. Wang DD, Toledo E, Hruby A, Rosner BA, Willett WC, Sun Q, Razquin C, Zheng Y, Ruiz-Canela M, Guasch-Ferré M, et al.. Plasma ceramides, mediterranean diet, and incident cardiovascular disease in the predimed trial (Prevención con Dieta Mediterránea).Circulation. 2017; 135:2028–2040. doi: 10.1161/CIRCULATIONAHA.116.024261Google Scholar
    • 48. Poss AM, Maschek JA, Cox JE, Hauner BJ, Hopkins PN, Hunt SC, Holland WL, Summers SA, Playdon MC. Machine learning reveals serum sphingolipids as cholesterol-independent biomarkers of coronary artery disease.J Clin Invest. 2020; 130:1363–1376. doi: 10.1172/JCI131838Google Scholar
    • 49. Ruuth M, Nguyen SD, Vihervaara T, Hilvo M, Laajala TD, Kondadi PK, Gisterå A, Lähteenmäki H, Kittilä T, Huusko J, et al.. Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths.Eur Heart J. 2018; 39:2562–2573. doi: 10.1093/eurheartj/ehy319Google Scholar
    • 50. Ruuth M, Aikas L, Tigistu-Sahle F, Kakela R, Lindholm H, Simonen P, Kovanen PT, Gylling H, Oorni K. Plant stanol esters reduce LDL (low-density lipoprotein) aggregation by altering LDL surface lipids: the blood flowrandomized intervention study.Arterioscler Thromb Vasc Biol. 2020; 40:2310–2321. doi: 10.1161/ATVBAHA.120.314329Google Scholar
    • 51. Tarasov K, Ekroos K, Suoniemi M, Kauhanen D, Sylvänne T, Hurme R, Gouni-Berthold I, Berthold HK, Kleber ME, Laaksonen R, et al.. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency.J Clin Endocrinol Metab. 2014; 99:E45–E52. doi: 10.1210/jc.2013-2559Google Scholar

    Sign In

    If you have AHA member/subscription access to this content, please .

    Or Purchase

    Restore content access
    This functionality works only for purchases made as a guest