Skip main navigation
×

Pulmonary Congestion During Exercise Stress Echocardiography in Ischemic and Heart Failure Patients

Originally publishedhttps://doi.org/10.1161/CIRCIMAGING.121.013558Circulation: Cardiovascular Imaging. 2022;15

Background:

Lung ultrasound detects pulmonary congestion as B-lines at rest, and more frequently, during exercise stress echocardiography (ESE).

Methods:

We performed ESE plus lung ultrasound (4-site simplified scan) in 4392 subjects referred for semi-supine bike ESE in 24 certified centers in 9 countries. B-line score ranged from 0 (normal) to 40 (severely abnormal). Five different populations were evaluated: control subjects (n=103); chronic coronary syndromes (n=3701); heart failure with reduced ejection fraction (n=395); heart failure with preserved ejection fraction (n=70); ischemic mitral regurgitation ≥ moderate at rest (n=123). In a subset of 2478 patients, follow-up information was available.

Results:

During ESE, B-lines increased in all study groups except controls. Age, hypertension, abnormal ejection fraction, peak wall motion score index, and abnormal heart rate reserve were associated with B-lines in multivariable regression analysis. Stress B lines (hazard ratio, 2.179 [95% CI, 1.015–4.680]; P=0.046) and ejection fraction <50% (hazard ratio, 2.942 [95% CI, 1.268–6.822]; P=0.012) were independent predictors of all-cause death (n=29 after a median follow-up of 29 months).

Conclusions:

B-lines identify the pulmonary congestion phenotype at rest, and more frequently, during ESE in ischemic and heart failure patients. Stress B-lines may help to refine risk stratification in these patients.

Registration:

URL: https://www.clinicaltrials.gov; Unique identifier: NCT 03049995.

Footnotes

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCIMAGING.121.013558.

For Sources of Funding and Disclosures, see page 304.

Correspondence to: Elisa Merli, MD, PhD, UO di Cardiologia, viale stradone 9, 48018, Faenza (RA), Italy. Email

References

  • 1. Jambrik Z, Monti S, Coppola V, Agricola E, Mottola G, Miniati M, Picano E. Usefulness of ultrasound lung comets as a nonradiologic sign of extravascular lung water.Am J Cardiol. 2004; 93:1265–1270. doi: 10.1016/j.amjcard.2004.02.012CrossrefMedlineGoogle Scholar
  • 2. Platz E, Lewis EF, Uno H, Peck J, Pivetta E, Merz AA, Hempel D, Wilson C, Frasure SE, Jhund PS, et al.. Detection and prognostic value of pulmonary congestion by lung ultrasound in ambulatory heart failure patients.Eur Heart J. 2016; 37:1244–1251. doi: 10.1093/eurheartj/ehv745CrossrefMedlineGoogle Scholar
  • 3. Scali MC, Cortigiani L, Simionuc A, Gregori D, Marzilli M, Picano E. Exercise-induced B-lines identify worse functional and prognostic stage in heart failure patients with depressed left ventricular ejection fraction.Eur J Heart Fail. 2017; 19:1468–1478. doi: 10.1002/ejhf.776CrossrefMedlineGoogle Scholar
  • 4. Coiro S, Simonovic D, Deljanin-Ilic M, Duarte K, Carluccio E, Cattadori G, Girerd N, Ambrosio G. Prognostic value of dynamic changes in pulmonary congestion during exercise stress echocardiography in heart failure with preserved ejection fraction.Circ Heart Fail. 2020; 13:e006769. doi: 10.1161/CIRCHEARTFAILURE.119.006769LinkGoogle Scholar
  • 5. Picano E, Frassi F, Agricola E, Gligorova S, Gargani L, Mottola G. Ultrasound lung comets: a clinically useful sign of extravascular lung water.J Am Soc Echocardiogr. 2006; 19:356–363. doi: 10.1016/j.echo.2005.05.019CrossrefMedlineGoogle Scholar
  • 6. Reddy YNV, Obokata M, Wiley B, Koepp KE, Jorgenson CC, Egbe A, Melenovsky V, Carter RE, Borlaug BA. The haemodynamic basis of lung congestion during exercise in heart failure with preserved ejection fraction.Eur Heart J. 2019; 40:3721–3730. doi: 10.1093/eurheartj/ehz713CrossrefMedlineGoogle Scholar
  • 7. Verbrugge FH, Guazzi M, Testani JM, Borlaug BA. Altered hemodynamics and end-organ damage in heart failure: impact on the lung and kidney.Circulation. 2020; 142:998–1012. doi: 10.1161/CIRCULATIONAHA.119.045409LinkGoogle Scholar
  • 8. Mulvagh SL, Kiamanesh O. Making a splash: stress lung ultrasound and the rising tide of lung water.JACC Cardiovasc Imaging. 2020; 13:2096–2098. doi: 10.1016/j.jcmg.2020.05.019CrossrefMedlineGoogle Scholar
  • 9. Picano E, Ciampi Q, Citro R, D’Andrea A, Scali MC, Cortigiani L, Olivotto I, Mori F, Galderisi M, Costantino MF, et al.. Stress echo 2020: the international stress echo study in ischemic and non-ischemic heart disease.Cardiovasc Ultrasound. 2017; 15:3. doi: 10.1186/s12947-016-0092-1CrossrefMedlineGoogle Scholar
  • 10. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al.. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging.J Am Soc Echocardiogr. 2015; 28:1–39.e14. doi: 10.1016/j.echo.2014.10.003CrossrefMedlineGoogle Scholar
  • 11. Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, et al.. The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.Eur Heart J Cardiovasc Imaging. 2016; 17:1191–1229. doi: 10.1093/ehjci/jew190CrossrefMedlineGoogle Scholar
  • 12. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D, Voigt JU, Zamorano JL; European Association of Echocardiography. Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC).Eur J Echocardiogr. 2008; 9:415–437. doi: 10.1093/ejechocard/jen175CrossrefMedlineGoogle Scholar
  • 13. Pellikka PA, Arruda-Olson A, Chaudhry FA, Chen MH, Marshall JE, Porter TR, Sawada SG. Guidelines for performance, interpretation, and application of stress echocardiography in ischemic heart disease: from the American Society of Echocardiography.J Am Soc Echocardiogr. 2020; 33:1–41.e8. doi: 10.1016/j.echo.2019.07.001CrossrefMedlineGoogle Scholar
  • 14. Ciampi Q, Picano E, Paterni M, Daros CB, Simova I, de Castro E Silva Pretto JL, Scali MC, Gaibazzi N, Severino S, Djordjevic-Dikic A, et al.; Stress Echo 2020 study group of the Italian Society of Cardiovascular Echography. Quality control of regional wall motion analysis in stress Echo 2020.Int J Cardiol. 2017; 249:479–485. doi: 10.1016/j.ijcard.2017.09.172CrossrefMedlineGoogle Scholar
  • 15. Ciampi Q, Zagatina A, Cortigiani L, Wierzbowska-Drabik K, Kasprzak JD, Haberka M, Djordjevic-Dikic A, Beleslin B, Boshchenko A, Ryabova T, et al.. Prognostic value of stress echocardiography assessed by the ABCDE protocol.Eur Heart J. 2021; 42:3869–3878. doi: 10.1093/eurheartj/ehab493CrossrefMedlineGoogle Scholar
  • 16. Scali MC, Zagatina A, Simova I, Zhuravskaya N, Ciampi Q, Paterni M, Marzilli M, Carpeggiani C, Picano E; Stress Echo 2020 study group of the Italian Society of Cardiovascular Echography (SIEC). B-lines with lung ultrasound: the optimal scan technique at rest and during stress.Ultrasound Med Biol. 2017; 43:2558–2566. doi: 10.1016/j.ultrasmedbio.2017.07.007CrossrefMedlineGoogle Scholar
  • 17. Picano E, De Nes M, Scali MC, Coviello K, Morrone D. Stress lung Ultrasound stress echo2020.2019. Available at https://www.youtube.com/watch?v=BwzgoG15E_AGoogle Scholar
  • 18. Scali MC, Zagatina A, Ciampi Q, Cortigiani L, D’Andrea A, Daros CB, Zhuravskaya N, Kasprzak JD, Wierzbowska-Drabik K, Luis de Castro E Silva Pretto J, et al.; Stress Echo 2020 Study Group of the Italian Society of Echocardiography and Cardiovascular Imaging. Lung ultrasound and pulmonary congestion during stress echocardiography.JACC Cardiovasc Imaging. 2020; 13:2085–2095. doi: 10.1016/j.jcmg.2020.04.020CrossrefMedlineGoogle Scholar
  • 19. Scali MC, Ciampi Q, Picano E, Bossone E, Ferrara F, Citro R, Colonna P, Costantino MF, Cortigiani L, Andrea A, et al.; Stress Echo 2020 study group of the Italian Society of Echocardiography and Cardiovascular Imaging (SIECVI). Quality control of B-lines analysis in stress Echo 2020.Cardiovasc Ultrasound. 2018; 16:20. doi: 10.1186/s12947-018-0138-7CrossrefMedlineGoogle Scholar
  • 20. Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion.Eur Heart J. 2016; 37:2097–2104. doi: 10.1093/eurheartj/ehw164CrossrefMedlineGoogle Scholar
  • 21. Itkin M, Rockson SG, Burkhoff D. Pathophysiology of the lymphatic system in patients with heart failure: JACC state-of-the-art review.J Am Coll Cardiol. 2021; 78:278–290. doi: 10.1016/j.jacc.2021.05.021CrossrefMedlineGoogle Scholar
  • 22. Neves de Araujo G, Beltrame R, Pinheiro Machado G, Luchese Custodio J, Zimerman A, Donelli da Silveira A, et al.. Comparison of admission lung ultrasound and left ventricular end-diastolic pressure in patients undergoing primary percutaneous coronary intervention.Circ Cardiovasc Imaging. 2021; 14:e011641. doi: 10.1161/CIRCIMAGING.120.011641LinkGoogle Scholar
  • 23. Wiley BM, Luoma CE, Olgun Kucuk H, Padang R, Kane GC, Pellikka PA. Lung ultrasound during stress echocardiography aids the evaluation of valvular heart disease severity.JACC Cardiovasc Imaging. 2020; 13:866–872. doi: 10.1016/j.jcmg.2019.06.026CrossrefMedlineGoogle Scholar
  • 24. D’Andrea A, Sperlongano S, Formisano T, Tocci G, Cameli M, Tusa M, Novo G, Corrado G, Ciampi Q, Citro R, et al.. Stress Echocardiography and Strain in Aortic Regurgitation (SESAR protocol): left ventricular contractile reserve and myocardial work in asymptomatic patients with severe aortic regurgitation.Echocardiography. 2020; 37:1213–1221. doi: 10.1111/echo.14804CrossrefMedlineGoogle Scholar
  • 25. Rivas-Lasarte M, Álvarez-García J, Fernández-Martínez J, Maestro A, López-López L, Solé-González E, Pirla MJ, Mesado N, Mirabet S, Fluvià P, et al.. Lung ultrasound-guided treatment in ambulatory patients with heart failure: a randomized controlled clinical trial (LUS-HF study).Eur J Heart Fail. 2019; 21:1605–1613. doi: 10.1002/ejhf.1604CrossrefMedlineGoogle Scholar
  • 26. Marini C, Fragasso G, Italia L, Sisakian H, Tufaro V, Ingallina G, Stella S, Ancona F, Loiacono F, Innelli P, et al.. Lung ultrasound-guided therapy reduces acute decompensation events in chronic heart failure.Heart. 2020; 106:1934–1939. doi: 10.1136/heartjnl-2019-316429CrossrefMedlineGoogle Scholar
  • 27. Araiza-Garaygordobil D, Gopar-Nieto R, Martinez-Amezcua P, Cabello-López A, Alanis-Estrada G, Luna-Herbert A, González-Pacheco H, Paredes-Paucar CP, Sierra-Lara MD, Briseño-De la Cruz JL, et al.. A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study).Am Heart J. 2020; 227:31–39. doi: 10.1016/j.ahj.2020.06.003CrossrefMedlineGoogle Scholar
  • 28. Mhanna M, Beran A, Nazir S, Sajdeya O, Srour O, Ayesh H, Eltahawy EA. Lung ultrasound-guided management to reduce hospitalization in chronic heart failure: a systematic review and meta-analysis.Heart Fail Rev. 2022;27:821-826. doi: 10.1007/s10741-021-10085-xGoogle Scholar
  • 29. Lichtenstein DA. Current misconceptions in lung ultrasound: a short guide for experts.Chest. 2019; 156:21–25. doi: 10.1016/j.chest.2019.02.332CrossrefMedlineGoogle Scholar
  • 30. Mizumi S, Goda A, Takeuchi K, Kikuchi H, Inami T, Soejima K, Satoh T. Effects of body position during cardiopulmonary exercise testing with right heart catheterization.Physiol Rep. 2018; 6:e13945. doi: 10.14814/phy2.13945CrossrefMedlineGoogle Scholar