Skip main navigation
×

Normal Values for Myocardial Work Indices Derived From Pressure-Strain Loop Analyses: From the CCHS

Originally publishedhttps://doi.org/10.1161/CIRCIMAGING.121.013712Circulation: Cardiovascular Imaging. 2022;15

Background:

Pressure-strain loop analyses is a noninvasive technique capable of evaluating myocardial work. Reference values are needed to benchmark these myocardial work indices for clinical practice.

Methods:

Healthy participants from a general population study were used to establish reference values for global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE) measured by pressure-strain loop analyses. The relation to age and sex was examined. We furthermore examined the proportion of abnormal work indices according to low, intermediate, and high cardiovascular risk by the Framingham risk score.

Results:

The healthy sample consisted of 1827 participants (median age, 45 years; 39% men). Lower reference values were GWI, 1576 mm Hg%; GCW, 1708 mm Hg%; and GWE, 93.0% and upper reference value for GWW was 159 mm Hg%. Women exhibited significantly higher GWI, GCW, and GWW and lower GWE. Sex significantly modified the association between all indices and age (P for interaction: 0.001 for GWI, 0.009 for GCW, 0.003 for GWW, and 0.009 for GWE). For men, only GCW increased with age, whereas the other indices did not change with age. For women, GCW increased linearly with increasing age, whereas GWI, GWW, and GWE changed in a curvilinear fashion with age such that GWI increased in younger participants, GWW increased in elderly, and GWE declined concordantly. Abnormalities in myocardial work indices became more frequent with increasing Framingham risk score category (abnormal GWI: 2% versus 4% versus 5%, P=0.001; abnormal GCW: 2% versus 3% versus 4%, P=0.006; abnormal GWW: 3% versus 6% versus 11%, P<0.001; abnormal GWE: 3% versus 4% versus 11%, P<0.001).

Conclusions:

Myocardial work indices differ between sexes and change with age in a sex-dependent manner. Accordingly, we established age- and sex-specific reference values from a general population sample. Abnormal work indices become more frequent with higher clinical risk.

Registration:

URL: https://www.clinicaltrials.gov; Unique identifier: NCT02993172.

Footnotes

Supplemental Material is available at https://www.ahajournals.org/doi/suppl/10.1161/CIRCIMAGING.121.013712.

For Sources of Funding and Disclosures, see page 326.

Correspondence to: Flemming Javier Olsen, MD, Cardiovascular Noninvasive Imaging Research Laboratory, Department of Cardiology, Copenhagen University Hospital–Herlev and Gentofte, Niels Andersens Vej 65, 2900 Hellerup, Denmark. Email

References

  • 1. Suga H. Ventricular energetics.Physiol Rev. 1990; 70:247–277. doi: 10.1152/physrev.1990.70.2.247CrossrefMedlineGoogle Scholar
  • 2. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Remme EW, Haugaa KH, Opdahl A, Fjeld JG, Gjesdal O, et al.. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work.Eur Heart J. 2012; 33:724–733. doi: 10.1093/eurheartj/ehs016CrossrefMedlineGoogle Scholar
  • 3. Russell K, Eriksen M, Aaberge L, Wilhelmsen N, Skulstad H, Gjesdal O, Edvardsen T, Smiseth OA. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions.Am J Physiol Heart Circ Physiol. 2013; 305:H996–1003. doi: 10.1152/ajpheart.00191.2013CrossrefMedlineGoogle Scholar
  • 4. Boe E, Russell K, Eek C, Eriksen M, Remme EW, Smiseth OA, Skulstad H. Non-invasive myocardial work index identifies acute coronary occlusion in patients with non-ST-segment elevation-acute coronary syndrome.Eur Heart J Cardiovasc Imaging. 2015; 16:1247–1255. doi: 10.1093/ehjci/jev078CrossrefMedlineGoogle Scholar
  • 5. Biering-Sørensen T, Biering-Sørensen SR, Olsen FJ, Sengeløv M, Jørgensen PG, Mogelvang R, Shah AM, Jensen JS. Global longitudinal strain by echocardiography predicts long-term risk of cardiovascular morbidity and mortality in a low-risk general population: the Copenhagen City Heart Study.Circ Cardiovasc Imaging. 2017; 10:e005521. doi: 10.1161/CIRCIMAGING.116.005521LinkGoogle Scholar
  • 6. Manganaro R, Marchetta S, Dulgheru R, Ilardi F, Sugimoto T, Robinet S, Cimino S, Go YY, Bernard A, Kacharava G, et al.. Echocardiographic reference ranges for normal non-invasive myocardial work indices: results from the EACVI NORRE study.Eur Heart J Cardiovasc Imaging. 2019; 20:582–590. doi: 10.1093/ehjci/jey188CrossrefMedlineGoogle Scholar
  • 7. Morbach C, Sahiti F, Tiffe T, Cejka V, Eichner FA, Gelbrich G, Heuschmann PU, Störk S; STAAB Consortium. Myocardial work - correlation patterns and reference values from the population-based STAAB cohort study.PLoS One. 2020; 15:e0239684. doi: 10.1371/journal.pone.0239684CrossrefMedlineGoogle Scholar
  • 8. Galli E, John-Matthwes B, Rousseau C, Schnell F, Leclercq C, Donal E. Echocardiographic reference ranges for myocardial work in healthy subjects: a preliminary study.Echocardiography. 2019; 36:1814–1824. doi: 10.1111/echo.14494CrossrefMedlineGoogle Scholar
  • 9. Skaarup KG, Lassen MCH, Johansen ND, Olsen FJ, Lind JN, Jørgensen PG, Jensen G, Schnohr P, Prescott E, Søgaard P, et al.. Age- and sex-based normal values of layer-specific longitudinal and circumferential strain by speckle tracking echocardiography: the Copenhagen City Heart Study.Eur Heart J Cardiovasc Imaging. 2022;23:629-640. doi: 10.1093/ehjci/jeab032Google Scholar
  • 10. D’Agostino RB, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB. General cardiovascular risk profile for use in primary care: the Framingham Heart Study.Circulation. 2008; 117:743–753. doi: 10.1161/CIRCULATIONAHA.107.699579LinkGoogle Scholar
  • 11. Biering-Sørensen T, Mogelvang R, Schnohr P, Jensen JS. Cardiac time intervals measured by tissue doppler imaging m-mode: association with hypertension, left ventricular geometry, and future ischemic cardiovascular diseases.J Am Heart Assoc. 2016; 5:e002687. doi: 10.1161/JAHA.115.002687LinkGoogle Scholar
  • 12. Manganaro R, Marchetta S, Dulgheru R, Sugimoto T, Tsugu T, Ilardi F, Cicenia M, Ancion A, Postolache A, Martinez C, et al.. Correlation between non-invasive myocardial work indices and main parameters of systolic and diastolic function: results from the EACVI NORRE study.Eur Heart J Cardiovasc Imaging. 2020; 21:533–541. doi: 10.1093/ehjci/jez203CrossrefMedlineGoogle Scholar
  • 13. Brainin P, Biering-Sørensen SR, Møgelvang R, de Knegt MC, Olsen FJ, Galatius S, Gislason GH, Jensen JS, Biering-Sørensen T. Post-systolic shortening: normal values and association with validated echocardiographic and invasive measures of cardiac function.Int J Cardiovasc Imaging. 2019; 35:327–337. doi: 10.1007/s10554-018-1474-2CrossrefMedlineGoogle Scholar
  • 14. Deschepper CF, Llamas B. Hypertensive cardiac remodeling in males and females: from the bench to the bedside.Hypertension. 2007; 49:401–407. doi: 10.1161/01.HYP.0000256279.49882.d8LinkGoogle Scholar
  • 15. Xu Y, Arenas IA, Armstrong SJ, Davidge ST. Estrogen modulation of left ventricular remodeling in the aged heart.Cardiovasc Res. 2003; 57:388–394. doi: 10.1016/s0008-6363(02)00705-8CrossrefMedlineGoogle Scholar
  • 16. Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions.J Am Coll Cardiol. 2013; 61:96–103. doi: 10.1016/j.jacc.2012.08.997CrossrefMedlineGoogle Scholar
  • 17. Martins D, Nelson K, Pan D, Tareen N, Norris K. The effect of gender on age-related blood pressure changes and the prevalence of isolated systolic hypertension among older adults: data from NHANES III.J Gend Specif Med. 2001; 4:10–13, 20.MedlineGoogle Scholar
  • 18. Roemer S, Jaglan A, Santos D, Umland M, Jain R, Tajik AJ, Khandheria BK. The utility of myocardial work in clinical practice.J Am Soc Echocardiogr. 2021; 34:807–818. doi: 10.1016/j.echo.2021.04.013CrossrefMedlineGoogle Scholar
  • 19. Sahiti F, Morbach C, Cejka V, Tiffe T, Wagner M, Eichner FA, Gelbrich G, Heuschmann PU, Störk S. Impact of cardiovascular risk factors on myocardial work-insights from the STAAB cohort study.J Hum Hypertens. 2022; 36:235–245. doi: 10.1038/s41371-021-00509-4CrossrefMedlineGoogle Scholar
  • 20. Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B, Chamberlain R, Scalia GM. A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy.Eur Heart J Cardiovasc Imaging. 2019; 20:31–39. doi: 10.1093/ehjci/jey131CrossrefMedlineGoogle Scholar
  • 21. Huang J, Yang C, Yan ZN, Fan L, Ni CF. Global myocardial work: a new way to detect subclinical myocardial dysfunction with normal left ventricle ejection fraction in essential hypertension patients: compared with myocardial layer-specific strain analysis.Echocardiography. 2021; 38:850–860. doi: 10.1111/echo.15063CrossrefMedlineGoogle Scholar
  • 22. Sahiti F, Morbach C, Cejka V, Albert J, Eichner FA, Gelbrich G, Heuschmann PU, Störk S. Left ventricular remodeling and myocardial work: results from the population-based STAAB cohort study.Front Cardiovasc Med. 2021; 8:669335. doi: 10.3389/fcvm.2021.669335CrossrefMedlineGoogle Scholar
  • 23. Brainin P, Biering-Sørensen SR, Møgelvang R, Søgaard P, Jensen JS, Biering-Sørensen T. Postsystolic shortening by speckle tracking echocardiography is an independent predictor of cardiovascular events and mortality in the general population.J Am Heart Assoc. 2018; 7:e008367. doi: 10.1161/JAHA.117.008367LinkGoogle Scholar
  • 24. Brainin P, Biering-Sørensen SR, Møgelvang R, Jensen JS, Biering-Sørensen T. Duration of early systolic lengthening: prognostic potential in the general population.Eur Heart J Cardiovasc Imaging. 2020; 21:1283–1290. doi: 10.1093/ehjci/jez262CrossrefMedlineGoogle Scholar