Skip main navigation

Visual Coronary and Aortic Calcium Scoring on Chest Computed Tomography Predict Mortality in Patients With Low-Density Lipoprotein-Cholesterol ≥190 mg/dL

Originally published Cardiovascular Imaging. 2022;15


Current guidelines recommend coronary artery calcium (CAC) scoring for stratification of atherosclerotic cardiovascular disease risk only in patients with borderline to intermediate risk score by the pooled cohort equation with low-density lipoprotein-cholesterol (LDL-C) of 70 to 190 mg/dL. It remains unknown if CAC or thoracic aorta calcification (TAC), detected on routine chest computed tomography, can provide further risk stratification in patients with LDL-C≥190 mg/dL.


From a multisite medical center, we retrospectively identified all patients from March 2005 to June 2021 age ≥40 years, without established atherosclerotic cardiovascular disease and LDL-C≥190 mg/dL who had non-gated non-contrast chest computed tomography within 3 years of LDL-C measurement. Ordinal CAC and TAC scores were measured by visual inspection. Kaplan-Meier curves and multivariable Cox-regression models were built to ascertain the association of CAC and TAC scores with all-cause mortality.


We included 811 patients with median age 59 (53–68) years, 262 (32.3%) were male, and LDL-C median level was 203 (194–217) mg/dL. Patients were followed for 6.2 (3.29–9.81) years, and 109 (13.4%) died. Overall, 376 (46.4%) of patients had CAC=0 and 226 (27.9%) had TAC=0. All-cause mortality increased with any CAC and moderate to severe TAC. In a multivariate model, patients with CAC had a significantly higher mortality compared with those without CAC: mild hazard ratio (HR), 1.71 (1.03–2.83), moderate HR, 2.12 (1.14–3.94), and severe HR, 3.49 (1.94–6.27). Patients with moderate TAC (HR, 2.34 [1.19–4.59]) and those with severe TAC (HR, 3.02 [1.36–6.74]) had higher mortality than those without TAC.


In patients without history of atherosclerotic cardiovascular disease and LDL-C≥190 mg/dL, the presence and severity of CAC and TAC are independently associated with all-cause mortality.


Continuing medical education (CME) credit is available for this article. Go to to take the quiz.

For Sources of Funding and Disclosures, see page 380.

Correspondence to: Leandro Slipczuk, MD, PhD, Montefiore Medical Center, Cardiology Division. 111 E 210th, Bronx, NY 10467. Email


  • 1. Khera AV, Won HH, Peloso GM, Lawson KS, Bartz TM, Deng X, van Leeuwen EM, Natarajan P, Emdin CA, Bick AG, et al.. Diagnostic yield and clinical utility of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia.J Am Coll Cardiol. 2016; 67:2578–2589. doi: 10.1016/j.jacc.2016.03.520CrossrefMedlineGoogle Scholar
  • 2. Perak AM, Ning H, de Ferranti SD, Gooding HC, Wilkins JT, Lloyd-Jones DM. Long-term risk of atherosclerotic cardiovascular disease in US adults with the familial hypercholesterolemia phenotype.Circulation. 2016; 134:9–19. doi: 10.1161/CIRCULATIONAHA.116.022335LinkGoogle Scholar
  • 3. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, Braun LT, de Ferranti S, Faiella-Tommasino J, Forman DE, et al.. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the american college of cardiology/american heart association task force on clinical practice guidelines.Circulation. 2019; 139:e1082–e1143. doi: 10.1161/CIR.0000000000000625LinkGoogle Scholar
  • 4. Orimoloye OA, Budoff MJ, Dardari ZA, Mirbolouk M, Uddin SMI, Berman DS, Rozanski A, Shaw LJ, Rumberger JA, Nasir K, et al.. Race/Ethnicity and the prognostic implications of coronary artery calcium for all-cause and cardiovascular disease mortality: the coronary artery calcium consortium.J Am Heart Assoc. 2018; 7:e010471. doi: 10.1161/JAHA.118.010471LinkGoogle Scholar
  • 5. Shemesh J, Henschke CI, Shaham D, Yip R, Farooqi AO, Cham MD, McCauley DI, Chen M, Smith JP, Libby DM, et al.. Ordinal scoring of coronary artery calcifications on low-dose CT scans of the chest is predictive of death from cardiovascular disease.Radiology. 2010; 257:541–548. doi: 10.1148/radiol.10100383CrossrefMedlineGoogle Scholar
  • 6. Hughes-Austin JM, Dominguez A, Allison MA, Wassel CL, Rifkin DE, Morgan CG, Daniels MR, Ikram U, Knox JB, Wright CM, et al.. Relationship of coronary calcium on standard chest CT scans with mortality.JACC Cardiovasc Imaging. 2016; 9:152–159. doi: 10.1016/j.jcmg.2015.06.030CrossrefMedlineGoogle Scholar
  • 7. Slipczuk L, Castagna F, Schonberger A, Novogrodsky E, Sekerak R, Dey D, Jorde UP, Levsky JM, Garcia MJ. Coronary artery calcification and epicardial adipose tissue as independent predictors of mortality in COVID-19.Int J Cardiovasc Imaging. 2021; 37:3093–3100. doi: 10.1007/s10554-021-02276-2CrossrefMedlineGoogle Scholar
  • 8. Han D, Kuronuma K, Rozanski A, Budoff MJ, Miedema MD, Nasir K, Shaw LJ, Rumberger JA, Gransar H, Blumenthal RS, et al.. Implication of thoracic aortic calcification over coronary calcium score regarding the 2018 ACC/AHA Multisociety cholesterol guideline: results from the CAC Consortium.Am J Prev Cardiol. 2021; 8:100232. doi: 10.1016/j.ajpc.2021.100232CrossrefMedlineGoogle Scholar
  • 9. Santos RD, Rumberger JA, Budoff MJ, Shaw LJ, Orakzai SH, Berman D, Raggi P, Blumenthal RS, Nasir K. Thoracic aorta calcification detected by electron beam tomography predicts all-cause mortality.Atherosclerosis. 2010; 209:131–135. doi: 10.1016/j.atherosclerosis.2009.08.025CrossrefMedlineGoogle Scholar
  • 10. Sandesara PB, Mehta A, O’Neal WT, Kelli HM, Sathiyakumar V, Martin SS, Blaha MJ, Blumenthal RS, Sperling LS. Clinical significance of zero coronary artery calcium in individuals with LDL cholesterol ≥190 mg/dL: The Multi-Ethnic Study of Atherosclerosis.Atherosclerosis. 2020; 292:224–229. doi: 10.1016/j.atherosclerosis.2019.09.014CrossrefMedlineGoogle Scholar
  • 11. Miname MH, Bittencourt MS, Moraes SR, Alves RIM, Silva PRS, Jannes CE, Pereira AC, Krieger JE, Nasir K, Santos RD. Coronary artery calcium and cardiovascular events in patients with familial hypercholesterolemia receiving standard lipid-lowering therapy.JACC Cardiovasc Imaging. 2019; 12:1797–1804. doi: 10.1016/j.jcmg.2018.09.019CrossrefMedlineGoogle Scholar
  • 12. Mszar R, Grandhi GR, Valero-Elizondo J, Virani SS, Blankstein R, Blaha M, Mata P, Miname MH, Al Rasadi K, Krumholz HM, et al.. Absence of coronary artery calcification in middle-aged familial hypercholesterolemia patients without atherosclerotic cardiovascular disease.JACC Cardiovasc Imaging. 2020; 13:1090–1092. doi: 10.1016/j.jcmg.2019.11.001CrossrefMedlineGoogle Scholar
  • 13. Gallo A, Pérez de Isla L, Charrière S, Vimont A, Alonso R, Muñiz-Grijalvo O, Díaz-Díaz JL, Zambón D, Moulin P, Bruckert E, et al.; REFERCHOL and SAFEHEART Investigators. The added value of coronary calcium score in predicting cardiovascular events in familial hypercholesterolemia.JACC Cardiovasc Imaging. 2021; 14:2414–2424. doi: 10.1016/j.jcmg.2021.06.011CrossrefMedlineGoogle Scholar
  • 14. Mortensen MB, Caínzos-Achirica M, Steffensen FH, Bøtker HE, Jensen JM, Sand NPR, Maeng M, Bruun JM, Blaha MJ, Sørensen HT, et al.. Association of coronary plaque with low-density lipoprotein cholesterol levels and rates of cardiovascular disease events among symptomatic adults.JAMA Netw Open. 2022; 5:e2148139. doi: 10.1001/jamanetworkopen.2021.48139CrossrefMedlineGoogle Scholar
  • 15. Dzaye O, Dardari ZA, Cainzos-Achirica M, Blankstein R, Agatston AS, Duebgen M, Yeboah J, Szklo M, Budoff MJ, Lima JAC, et al.. Warranty period of a calcium score of zero: comprehensive analysis from MESA.JACC Cardiovasc Imaging. 2021; 14:990–1002. doi: 10.1016/j.jcmg.2020.06.048CrossrefMedlineGoogle Scholar
  • 16. Bassler JF, Marascuilo LA, McSweeney M. Nonparametric and distribution-free methods for the social sciences.J Am Stat Assoc. 1978; 73.CrossrefGoogle Scholar
  • 17. McGowan MP, Hosseini Dehkordi SH, Moriarty PM, Duell PB. Diagnosis and treatment of heterozygous familial hypercholesterolemia.J Am Heart Assoc. 2019; 8:e013225. doi: 10.1161/JAHA.119.013225LinkGoogle Scholar
  • 18. Santos RD, Gidding SS, Hegele RA, Cuchel MA, Barter PJ, Watts GF, Baum SJ, Catapano AL, Chapman MJ, Defesche JC, et al.; International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel. Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the international atherosclerosis society severe familial hypercholesterolemia panel.Lancet Diabetes Endocrinol. 2016; 4:850–861. doi: 10.1016/S2213-8587(16)30041-9CrossrefMedlineGoogle Scholar
  • 19. Mszar R, Nasir K, Santos RD. Coronary artery calcification in familial hypercholesterolemia: an opportunity for risk assessment and shared decision making with the power of zero?Circulation. 2020; 142:1405–1407. doi: 10.1161/CIRCULATIONAHA.120.049057LinkGoogle Scholar
  • 20. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, Rana JS, Orakzai R, Hayes SW, Friedman JD, et al.. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the EISNER (Early Identification of Subclinical Atherosclerosis by Noninvasive Imaging Research) prospective randomized trial.J Am Coll Cardiol. 2011; 57:1622–1632. doi: 10.1016/j.jacc.2011.01.019CrossrefMedlineGoogle Scholar
  • 21. Jurgens P, Carr JJ, Terry J, Rana JS, Jacobs DR, Duprez D. Association of coronary artery calcium and abdominal aorta calcium with incident fatal and non-fatal cardiovascular disease events: the coronary artery risk development in young adults study.J Am Heart Assoc. 2021; 10:e023037 Scholar
  • 22. Hecht HS, Blaha MJ, Kazerooni EA, Cury RC, Budoff M, Leipsic J, Shaw L. CAC-DRS: coronary artery calcium data and reporting system. an expert consensus document of the society of cardiovascular computed tomography (SCCT).J Cardiovasc Comput Tomogr. 2018; 12:185–191. doi: 10.1016/j.jcct.2018.03.008CrossrefMedlineGoogle Scholar
  • 23. Hecht HS, Cronin P, Blaha MJ, Budoff MJ, Kazerooni EA, Narula J, Yankelevitz D, Abbara S. 2016 SCCT/STR guidelines for coronary artery calcium scoring of noncontrast noncardiac chest CT scans: a report of the society of cardiovascular computed tomography and society of thoracic radiology.J Cardiovasc Comput Tomogr. 2017; 11:74–84. doi: 10.1016/j.jcct.2016.11.003CrossrefMedlineGoogle Scholar
  • 24. Min JK, Labounty TM, Gomez MJ, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, et al.. Incremental prognostic value of coronary computed tomographic angiography over coronary artery calcium score for risk prediction of major adverse cardiac events in asymptomatic diabetic individuals.Atherosclerosis. 2014; 232:298–304. doi: 10.1016/j.atherosclerosis.2013.09.025CrossrefMedlineGoogle Scholar
  • 25. Osei AD, Mirbolouk M, Berman D, Budoff MJ, Miedema MD, Rozanski A, Rumberger JA, Shaw L, Al Rifai M, Dzaye O, et al.. Prognostic value of coronary artery calcium score, area, and density among individuals on statin therapy vs. non-users: The coronary artery calcium consortium.Atherosclerosis. 2021; 316:79–83. doi: 10.1016/j.atherosclerosis.2020.10.009CrossrefMedlineGoogle Scholar