Skip main navigation

Rho-Kinase Inhibition Improves the Outcome of Focal Subcortical White Matter Lesions

Originally published 2022;53:2369–2376


    Subcortical white matter lesions are exceedingly common in cerebral small vessel disease and lead to significant cumulative disability without an available treatment. Here, we tested a rho-kinase inhibitor on functional recovery after focal white matter injury.


    A focal corpus callosum lesion was induced by stereotactic injection of N5-(1-iminoethyl)-L-ornithine in mice. Fasudil (10 mg/kg) or vehicle was administered daily for 2 weeks, starting one day after lesion induction. Resting-state functional connectivity and grid walk performance were studied longitudinally, and lesion volumes were determined at one month.


    Resting-state interhemispheric functional connectivity significantly recovered between days 1 and 14 in the fasudil group (P<0.001), despite worse initial connectivity loss than vehicle before treatment onset. Grid walk test revealed an increased number of foot faults in the vehicle group compared with baseline, which persisted for at least 4 weeks. In contrast, the fasudil arm did not show an increase in foot faults and had smaller lesions at 4 weeks. Immunohistochemical examination of reactive astrocytosis, synaptic density, and mature oligodendrocytes did not reveal a significant difference between treatment arms.


    These data show that delayed fasudil posttreatment improves functional outcomes after a focal subcortical white matter lesion in mice. Future work will aim to elucidate the mechanisms.


    Supplemental Material is available at

    For Sources of Funding and Disclosures, see page 2375.

    Correspondence to: Cenk Ayata, MD, PhD, Massachusetts General Hospital, 149 13th Street, 6403, Charlestown, MA 02129. Email


    • 1. Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Pathology of lacunar ischemic stroke in humans–a systematic review.Brain Pathol. 2012; 22:583–591. doi: 10.1111/j.1750-3639.2012.00575.xGoogle Scholar
    • 2. DeCarli C, Fletcher E, Ramey V, Harvey D, Jagust WJ. Anatomical mapping of white matter hyperintensities (WMH): exploring the relationships between periventricular WMH, deep WMH, and total WMH burden.Stroke. 2005; 36:50–55. doi: 10.1161/01.STR.0000150668.58689.f2Google Scholar
    • 3. Su E, Bell M. Diffuse axonal injury.Laskowitz D, Grant G, eds. In: Translational Research in Traumatic Brain Injury. Boca Raton: Taylor & Francis Group, LLC; 2016.Google Scholar
    • 4. van der Knaap LJ, van der Ham IJ. How does the corpus callosum mediate interhemispheric transfer? A review.Behav Brain Res. 2011; 223:211–221. doi: 10.1016/j.bbr.2011.04.018Google Scholar
    • 5. Wardlaw JM, Valdés Hernández MC, Muñoz-Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment.J Am Heart Assoc. 2015; 4:001140. doi: 10.1161/JAHA.114.001140Google Scholar
    • 6. Potter GM, Marlborough FJ, Wardlaw JM. Wide variation in definition, detection, and description of lacunar lesions on imaging.Stroke. 2011; 42:359–366. doi: 10.1161/STROKEAHA.110.594754Google Scholar
    • 7. Vermeer SE, Longstreth WT, Koudstaal PJ. Silent brain infarcts: a systematic review.Lancet Neurol. 2007; 6:611–619. doi: 10.1016/S1474-4422(07)70170-9Google Scholar
    • 8. Leuchter AF, Dunkin JJ, Lufkin RB, Anzai Y, Cook IA, Newton TF. Effect of white matter disease on functional connections in the aging brain.J Neurol Neurosurg Psychiatry. 1994; 57:1347–1354. doi: 10.1136/jnnp.57.11.1347Google Scholar
    • 9. Shin HK, Salomone S, Ayata C. Targeting cerebrovascular Rho-kinase in stroke.Expert Opin Ther Targets. 2008; 12:1547–1564. doi: 10.1517/14728220802539244Google Scholar
    • 10. Vesterinen HM, Currie GL, Carter S, Mee S, Watzlawick R, Egan KJ, Macleod MR, Sena ES. Systematic review and stratified meta-analysis of the efficacy of RhoA and Rho kinase inhibitors in animal models of ischaemic stroke.Syst Rev. 2013; 2:33. doi: 10.1186/2046-4053-2-33Google Scholar
    • 11. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki T, Narumiya S. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons.Neuron. 2000; 26:431–441. doi: 10.1016/s0896-6273(00)81175-7Google Scholar
    • 12. Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L. Inactivation of Rho signaling pathway promotes CNS axon regeneration.J Neurosci. 1999; 19:7537–7547.Google Scholar
    • 13. Sun X, Minohara M, Kikuchi H, Ishizu T, Tanaka M, Piao H, Osoegawa M, Ohyagi Y, Shimokawa H, Kira J. The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis.J Neuroimmunol. 2006; 180:126–134. doi: 10.1016/j.jneuroim.2006.06.027Google Scholar
    • 14. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR. Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling.Brain. 2009; 132(pt 2):465–481. doi: 10.1093/brain/awn334Google Scholar
    • 15. Paintlia AS, Paintlia MK, Singh AK, Singh I. Inhibition of rho family functions by lovastatin promotes myelin repair in ameliorating experimental autoimmune encephalomyelitis.Mol Pharmacol. 2008; 73:1381–1393. doi: 10.1124/mol.107.044230Google Scholar
    • 16. Mulherkar S, Tolias KF. RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury.Cells. 2020; 9:E245. doi: 10.3390/cells9010245Google Scholar
    • 17. Watzlawick R, Sena ES, Dirnagl U, Brommer B, Kopp MA, Macleod MR, Howells DW, Schwab JM. Effect and reporting bias of RhoA/ROCK-blockade intervention on locomotor recovery after spinal cord injury: a systematic review and meta-analysis.JAMA Neurol. 2014; 71:91–99. doi: 10.1001/jamaneurol.2013.4684Google Scholar
    • 18. Forgione N, Fehlings MG. Rho-ROCK inhibition in the treatment of spinal cord injury.World Neurosurg. 2014; 82:e535–e539. doi: 10.1016/j.wneu.2013.01.009Google Scholar
    • 19. Lemmens R, Jaspers T, Robberecht W, Thijs VN. Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke.Hum Mol Genet. 2013; 22:2214–2220. doi: 10.1093/hmg/ddt073Google Scholar
    • 20. Aykan SA, Xie H, Lai JH, Zheng Y, Chung DY, Kura S, Anzabi M, Sugimoto K, McAllister LM, Yaseen MA, et al.. Focal subcortical white matter lesions disrupt resting state cortical interhemispheric functional connectivity in mice.Cereb Cortex. 2021; 31:4958–4969. doi: 10.1093/cercor/bhab134Google Scholar
    • 21. Bauer AQ, Kraft AW, Wright PW, Snyder AZ, Lee JM, Culver JP. Optical imaging of disrupted functional connectivity following ischemic stroke in mice.Neuroimage. 2014; 99:388–401. doi: 10.1016/j.neuroimage.2014.05.051Google Scholar
    • 22. Chung DY, Oka F, Jin G, Harriott A, Kura S, Aykan S, Qin T, Edmiston WJ, Lee H, Yaseen MA, et al.. Subarachnoid hemorrhage leads to early and persistent functional connectivity and behavioral changes in mice.J Cereb Blood Flow Metab. 2021; 41:975–985. doi: 10.1177/0271678X20940152Google Scholar
    • 23. Xie H, Chung DY, Kura S, Sugimoto K, Aykan SA, Wu Y, Sakadzic S, Yaseen MA, Boas DA, Ayata C. Differential effects of anesthetics on resting state functional connectivity in the mouse.J Cereb Blood Flow Metab. 2019: 40:875–884. doi: 10.1177/0271678X19847123Google Scholar
    • 24. Bauer AQ, Kraft AW, Baxter GA, Wright PW, Reisman MD, Bice AR, Park JJ, Bruchas MR, Snyder AZ, Lee JM, Culver JP. Effective connectivity measured using optogenetically evoked hemodynamic signals exhibits topography distinct from resting state functional connectivity in the mouse.Cereb Cortex. 2018; 28:370–386. doi: 10.1093/cercor/bhx298Google Scholar
    • 25. Kura S, Xie H, Fu B, Ayata C, Boas DA, Sakadžić S. Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex.J Neural Eng. 2018; 15:035003. doi: 10.1088/1741-2552/aaafe4Google Scholar
    • 26. Hakon J, Quattromani MJ, Sjölund C, Tomasevic G, Carey L, Lee JM, Ruscher K, Wieloch T, Bauer AQ. Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke.Neuroimage Clin. 2018; 17:717–730. doi: 10.1016/j.nicl.2017.11.022Google Scholar
    • 27. White BR, Bauer AQ, Snyder AZ, Schlaggar BL, Lee JM, Culver JP. Imaging of functional connectivity in the mouse brain.PLoS One. 2011; 6:e16322. doi: 10.1371/journal.pone.0016322Google Scholar
    • 28. PaxinosG , Franklin KBJ. Paxinos and Franklin's The Mouse Brain in Stereotaxic Coordinates. Compact 5th Ed. San Diego: Elsevier Academic Press; 2019.Google Scholar
    • 29. Blasi F, Wei Y, Balkaya M, Tikka S, Mandeville JB, Waeber C, Ayata C, Moskowitz MA. Recognition memory impairments after subcortical white matter stroke in mice.Stroke. 2014; 45:1468–1473. doi: 10.1161/STROKEAHA.114.005324Google Scholar
    • 30. Blasi F, Whalen MJ, Ayata C. Lasting pure-motor deficits after focal posterior internal capsule white-matter infarcts in rats.J Cereb Blood Flow Metab. 2015; 35:977–984. doi: 10.1038/jcbfm.2015.7Google Scholar
    • 31. Uchida H, Niizuma K, Kushida Y, Wakao S, Tominaga T, Borlongan CV, Dezawa M. Human muse cells reconstruct neuronal circuitry in subacute lacunar stroke model.Stroke. 2017; 48:428–435. doi: 10.1161/STROKEAHA.116.014950Google Scholar
    • 32. Shibuya M, Hirai S, Seto M, Satoh S, Ohtomo E; Fasudil Ischemic Stroke Study Group. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial.J Neurol Sci. 2005; 238:31–39. doi: 10.1016/j.jns.2005.06.003Google Scholar
    • 33. Rehme AK, Volz LJ, Feis DL, Eickhoff SB, Fink GR, Grefkes C. Individual prediction of chronic motor outcome in the acute post-stroke stage: behavioral parameters versus functional imaging.Hum Brain Mapp. 2015; 36:4553–4565. doi: 10.1002/hbm.22936Google Scholar
    • 34. Lee JH, Zheng Y, von Bornstadt D, Wei Y, Balcioglu A, Daneshmand A, Yalcin N, Yu E, Herisson F, Atalay YB, et al.. Selective rock2 inhibition in focal cerebral ischemia.Ann Clin Transl Neurol. 2014; 1:2–14. doi: 10.1002/acn3.19Google Scholar
    • 35. Liu YH, Zhao Y, Huang FZ, Chen YH, Wang HX, Bonney E, Liu BQ. Combination of early constraint-induced movement therapy and fasudil enhances motor recovery after ischemic stroke in rats.Int J Neurosci. 2016; 126:168–173. doi: 10.3109/00207454.2014.998759Google Scholar
    • 36. Zhai ZY, Feng J. Constraint-induced movement therapy enhances angiogenesis and neurogenesis after cerebral ischemia/reperfusion.Neural Regen Res. 2019; 14:1743–1754. doi: 10.4103/1673-5374.257528Google Scholar
    • 37. Zhu YT, Zhang Q, Xie HY, Yu KW, Xu GJ, Li SY, Wu Y. Environmental enrichment combined with fasudil promotes motor function recovery and axonal regeneration after stroke.Neural Regen Res. 2021; 16:2512–2520. doi: 10.4103/1673-5374.313048Google Scholar
    • 38. Shirao S, Yoneda H, Ishihara H, Kajiwara K, Suzuki M; Survey Study Members of Japan Neurosurgical Society. A proposed definition of symptomatic vasospasm based on treatment of cerebral vasospasm after subarachnoid hemorrhage in Japan: consensus 2009, a project of the 25 spasm symposium.Surg Neurol Int. 2011; 2:74. doi: 10.4103/2152-7806.81968Google Scholar

    Sign In

    If you have AHA member/subscription access to this content, please .

    Or Purchase

    Restore content access
    This functionality works only for purchases made as a guest